Loading…

Scalable adaptive PDE solvers in arbitrary domains

Efficiently and accurately simulating partial differential equations (PDEs) in and around arbitrarily defined geometries, especially with high levels of adaptivity, has significant implications for different application domains. A key bottleneck in the above process is the fast construction of a `go...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-08
Main Authors: Kumar, Saurabh, Ishii, Masado, Milinda Fernando, Gao, Boshun, Tan, Kendrick, Ming-Chen, Hsu, Krishnamurthy, Adarsh, Sundar, Hari, Baskar Ganapathysubramanian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Efficiently and accurately simulating partial differential equations (PDEs) in and around arbitrarily defined geometries, especially with high levels of adaptivity, has significant implications for different application domains. A key bottleneck in the above process is the fast construction of a `good' adaptively-refined mesh. In this work, we present an efficient novel octree-based adaptive discretization approach capable of carving out arbitrarily shaped void regions from the parent domain: an essential requirement for fluid simulations around complex objects. Carving out objects produces an \(\textit{incomplete}\) octree. We develop efficient top-down and bottom-up traversal methods to perform finite element computations on \(\textit{incomplete}\) octrees. We validate the framework by (a) showing appropriate convergence analysis and (b) computing the drag coefficient for flow past a sphere for a wide range of Reynolds numbers (\(\mathcal{O}(1-10^6)\)) encompassing the drag crisis regime. Finally, we deploy the framework on a realistic geometry on a current project to evaluate COVID-19 transmission risk in classrooms.
ISSN:2331-8422
DOI:10.48550/arxiv.2108.03757