Loading…
The space of invariant measures for countable Markov shifts
It is well known that the space of invariant probability measures for transitive sub-shifts of finite type is a Poulsen simplex. In this article we prove that in the non-compact setting, for a large family of transitive countable Markov shifts, the space of invariant sub-probability measures is a Po...
Saved in:
Published in: | Journal d'analyse mathématique (Jerusalem) 2021-06, Vol.143 (2), p.461-501 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is well known that the space of invariant probability measures for transitive sub-shifts of finite type is a Poulsen simplex. In this article we prove that in the non-compact setting, for a large family of transitive countable Markov shifts, the space of invariant sub-probability measures is a Poulsen simplex and that its extreme points are the ergodic invariant probability measures together with the zero measure. In particular, we obtain that the space of invariant probability measures is a Poulsen simplex minus a vertex and the corresponding convex combinations. Our results apply to finite entropy non-locally compact transitive countable Markov shifts and to every locally compact transitive countable Markov shift. In order to prove these results we introduce a topology on the space of measures that generalizes the vague topology to a class of non-locally compact spaces, the topology of convergence on cylinders. We also prove analogous results for suspension flows defined over countable Markov shifts. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-021-0159-2 |