Loading…
A Novel Machine Learning Model for the Detection of Epilepsy and Epileptic Seizures Using Electroencephalographic Signals Based on Chaos and Fractal Theories
Machine learning is an expanding research area. Its main application is in the medical field and particularly the detection of epilepsy and epileptic seizures through electroencephalographic signals (EEG). It aims to design an intelligent framework that enables an immediate diagnosis of this disease...
Saved in:
Published in: | Mathematical problems in engineering 2021-08, Vol.2021, p.1-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Machine learning is an expanding research area. Its main application is in the medical field and particularly the detection of epilepsy and epileptic seizures through electroencephalographic signals (EEG). It aims to design an intelligent framework that enables an immediate diagnosis of this disease without neurological consultation and thus saves the lives of the epileptic patients by detecting seizures and warning them before it happens. However, as a real-time application, this kind of framework faces several challenges such as accuracy, fast responses, and optimal memory usage. Within this context, our work was carried out. We propose a new machine learning framework based on chaos and fractal theories. Two main novelties are presented in this paper. Firstly, we propose a new method for signal preprocessing, and we reconstruct new versions of studied EEG signals using derivative determination and chaotic injection. Secondly, we suggest a new method for fractal analysis using Higuchi fractal dimension (HFD). In fact, HFDs extracted from EEG derivatives lead to detect epilepsy, whereas HFDs extracted from EEG with a chaotic signal injection lead to seizure detection. In addition, feature fusion helped to linearize all classification problems. An experimental study using the Bonn EEG database proves the efficiency of our contributions in comparison to published research. An accuracy of 100% was achieved in different classification cases using few features and a simple linear classifier. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/2107113 |