Loading…

A Novel Machine Learning Model for the Detection of Epilepsy and Epileptic Seizures Using Electroencephalographic Signals Based on Chaos and Fractal Theories

Machine learning is an expanding research area. Its main application is in the medical field and particularly the detection of epilepsy and epileptic seizures through electroencephalographic signals (EEG). It aims to design an intelligent framework that enables an immediate diagnosis of this disease...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2021-08, Vol.2021, p.1-10
Main Authors: Brari, Zayneb, Belghith, Safya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Machine learning is an expanding research area. Its main application is in the medical field and particularly the detection of epilepsy and epileptic seizures through electroencephalographic signals (EEG). It aims to design an intelligent framework that enables an immediate diagnosis of this disease without neurological consultation and thus saves the lives of the epileptic patients by detecting seizures and warning them before it happens. However, as a real-time application, this kind of framework faces several challenges such as accuracy, fast responses, and optimal memory usage. Within this context, our work was carried out. We propose a new machine learning framework based on chaos and fractal theories. Two main novelties are presented in this paper. Firstly, we propose a new method for signal preprocessing, and we reconstruct new versions of studied EEG signals using derivative determination and chaotic injection. Secondly, we suggest a new method for fractal analysis using Higuchi fractal dimension (HFD). In fact, HFDs extracted from EEG derivatives lead to detect epilepsy, whereas HFDs extracted from EEG with a chaotic signal injection lead to seizure detection. In addition, feature fusion helped to linearize all classification problems. An experimental study using the Bonn EEG database proves the efficiency of our contributions in comparison to published research. An accuracy of 100% was achieved in different classification cases using few features and a simple linear classifier.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/2107113