Loading…

Linear nearest neighbor flocks with all distinct agents

This paper analyzes the global dynamics of one-dimensional agent arrays with nearest neighbor linear couplings. The equations of motion are second-order linear ODE’s with constant coefficients. The novel part of this research is that the couplings are different for each distinct agent. We allow the...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2021-08, Vol.94 (8), Article 174
Main Authors: Lyons, R. G., Veerman, J. J. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper analyzes the global dynamics of one-dimensional agent arrays with nearest neighbor linear couplings. The equations of motion are second-order linear ODE’s with constant coefficients. The novel part of this research is that the couplings are different for each distinct agent. We allow the forces to depend on the positions and velocity (damping terms) but the magnitudes of both the position and velocity couplings are different for each agent. We, also, do not assume that the forces are “Newtonian” (i.e. the force due to A on B equals the minus the force of B on A) as this assumption does not apply to certain situations, such as traffic modeling. For example, driver A reacting to driver B does not imply the opposite reaction in driver B. There are no known analytical means to solve these systems, even though they are linear, and so relatively little is known about them. This paper is a generalization of previous work that computed the global dynamics of one-dimensional sequences of identical agents (Cantos et al., Eur Phys J Special Topics 225:1115–1125, 2016) assuming periodic boundary conditions. In this paper, we push that method further, similar to Baldivieso and Veerman, IEEE Trans Control Network Syst (2021), and use an extended periodic boundary condition to to gain quantitative insights into the systems under consideration. We find that we can approximate the global dynamics of such a system by carefully analyzing the low-frequency behavior of the system with (generalized) periodic boundary conditions. Graphic abstract
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/s10051-021-00163-2