Loading…
q-analogues of multiple zeta values and the formal double Eisenstein space
In this survey article, we discuss the algebraic structure of q-analogues of multiple zeta values, which are closely related to derivatives of Eisenstein series. Moreover, we introduce the formal double Eisenstein space, which generalizes the formal double zeta space of Gangl, Kaneko, and Zagier. Us...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this survey article, we discuss the algebraic structure of q-analogues of multiple zeta values, which are closely related to derivatives of Eisenstein series. Moreover, we introduce the formal double Eisenstein space, which generalizes the formal double zeta space of Gangl, Kaneko, and Zagier. Using the algebraic structure of q-analogues of multiple zeta values, we will present a realization of this space. As an application, we will obtain purely combinatorial proofs of identities among (quasi-)modular forms. |
---|---|
ISSN: | 2331-8422 |