Loading…
q-analogues of multiple zeta values and the formal double Eisenstein space
In this survey article, we discuss the algebraic structure of q-analogues of multiple zeta values, which are closely related to derivatives of Eisenstein series. Moreover, we introduce the formal double Eisenstein space, which generalizes the formal double zeta space of Gangl, Kaneko, and Zagier. Us...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bachmann, Henrik |
description | In this survey article, we discuss the algebraic structure of q-analogues of multiple zeta values, which are closely related to derivatives of Eisenstein series. Moreover, we introduce the formal double Eisenstein space, which generalizes the formal double zeta space of Gangl, Kaneko, and Zagier. Using the algebraic structure of q-analogues of multiple zeta values, we will present a realization of this space. As an application, we will obtain purely combinatorial proofs of identities among (quasi-)modular forms. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2564172487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564172487</sourcerecordid><originalsourceid>FETCH-proquest_journals_25641724873</originalsourceid><addsrcrecordid>eNqNjc0KgkAURocgSMp3uNBa0Bn_9mFE6_Zyy6sp44x6Z1r09Bn0AK0OfBy-sxGBVCqJylTKnQiZhziOZV7ILFOBuM4RGtS288RgWxi9dv2kCd7kEF6ovzuaBtyToLXLiBoa6--rUfVMhh31BnjCBx3EtkXNFP64F8dzdTtdommx83rj6sH6ZY1xLbM8TQqZloX6z_oA1NI84A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564172487</pqid></control><display><type>article</type><title>q-analogues of multiple zeta values and the formal double Eisenstein space</title><source>Publicly Available Content Database</source><creator>Bachmann, Henrik</creator><creatorcontrib>Bachmann, Henrik</creatorcontrib><description>In this survey article, we discuss the algebraic structure of q-analogues of multiple zeta values, which are closely related to derivatives of Eisenstein series. Moreover, we introduce the formal double Eisenstein space, which generalizes the formal double zeta space of Gangl, Kaneko, and Zagier. Using the algebraic structure of q-analogues of multiple zeta values, we will present a realization of this space. As an application, we will obtain purely combinatorial proofs of identities among (quasi-)modular forms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Combinatorial analysis</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2564172487?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Bachmann, Henrik</creatorcontrib><title>q-analogues of multiple zeta values and the formal double Eisenstein space</title><title>arXiv.org</title><description>In this survey article, we discuss the algebraic structure of q-analogues of multiple zeta values, which are closely related to derivatives of Eisenstein series. Moreover, we introduce the formal double Eisenstein space, which generalizes the formal double zeta space of Gangl, Kaneko, and Zagier. Using the algebraic structure of q-analogues of multiple zeta values, we will present a realization of this space. As an application, we will obtain purely combinatorial proofs of identities among (quasi-)modular forms.</description><subject>Algebra</subject><subject>Combinatorial analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjc0KgkAURocgSMp3uNBa0Bn_9mFE6_Zyy6sp44x6Z1r09Bn0AK0OfBy-sxGBVCqJylTKnQiZhziOZV7ILFOBuM4RGtS288RgWxi9dv2kCd7kEF6ovzuaBtyToLXLiBoa6--rUfVMhh31BnjCBx3EtkXNFP64F8dzdTtdommx83rj6sH6ZY1xLbM8TQqZloX6z_oA1NI84A</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Bachmann, Henrik</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210819</creationdate><title>q-analogues of multiple zeta values and the formal double Eisenstein space</title><author>Bachmann, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25641724873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Combinatorial analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Bachmann, Henrik</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachmann, Henrik</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>q-analogues of multiple zeta values and the formal double Eisenstein space</atitle><jtitle>arXiv.org</jtitle><date>2021-08-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this survey article, we discuss the algebraic structure of q-analogues of multiple zeta values, which are closely related to derivatives of Eisenstein series. Moreover, we introduce the formal double Eisenstein space, which generalizes the formal double zeta space of Gangl, Kaneko, and Zagier. Using the algebraic structure of q-analogues of multiple zeta values, we will present a realization of this space. As an application, we will obtain purely combinatorial proofs of identities among (quasi-)modular forms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2564172487 |
source | Publicly Available Content Database |
subjects | Algebra Combinatorial analysis |
title | q-analogues of multiple zeta values and the formal double Eisenstein space |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=q-analogues%20of%20multiple%20zeta%20values%20and%20the%20formal%20double%20Eisenstein%20space&rft.jtitle=arXiv.org&rft.au=Bachmann,%20Henrik&rft.date=2021-08-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2564172487%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25641724873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564172487&rft_id=info:pmid/&rfr_iscdi=true |