Loading…
Model order selection for approximate Boolean matrix factorization problem
A key step in applying Boolean matrix factorization (BMF) is establishing the correct model order for the data, i.e., decide where the knowledge stops and the noise starts, or simply, decide the proper number of factors that describe the data well. There are two main approaches to BMF, namely, Discr...
Saved in:
Published in: | Knowledge-based systems 2021-09, Vol.227, p.107184, Article 107184 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A key step in applying Boolean matrix factorization (BMF) is establishing the correct model order for the data, i.e., decide where the knowledge stops and the noise starts, or simply, decide the proper number of factors that describe the data well. There are two main approaches to BMF, namely, Discrete Basis Problem (DBP) and Approximation Factorization Problem (AFP). Although the model order selection technique for DBP exists, there is no technique tailored for AFP. We show that the number of factors for DBP cannot be used in AFP, and we present a novel way, reflecting the nature of AFP, how to establish the proper number of factors. Moreover, we show that the number of factors established for AFP is – from a knowledge-representation viewpoint – better than that for DBP. |
---|---|
ISSN: | 0950-7051 1872-7409 |
DOI: | 10.1016/j.knosys.2021.107184 |