Loading…

Model order selection for approximate Boolean matrix factorization problem

A key step in applying Boolean matrix factorization (BMF) is establishing the correct model order for the data, i.e., decide where the knowledge stops and the noise starts, or simply, decide the proper number of factors that describe the data well. There are two main approaches to BMF, namely, Discr...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2021-09, Vol.227, p.107184, Article 107184
Main Authors: Trnecka, Martin, Trneckova, Marketa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A key step in applying Boolean matrix factorization (BMF) is establishing the correct model order for the data, i.e., decide where the knowledge stops and the noise starts, or simply, decide the proper number of factors that describe the data well. There are two main approaches to BMF, namely, Discrete Basis Problem (DBP) and Approximation Factorization Problem (AFP). Although the model order selection technique for DBP exists, there is no technique tailored for AFP. We show that the number of factors for DBP cannot be used in AFP, and we present a novel way, reflecting the nature of AFP, how to establish the proper number of factors. Moreover, we show that the number of factors established for AFP is – from a knowledge-representation viewpoint – better than that for DBP.
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2021.107184