Loading…

Enjoy the Salience: Towards Better Transformer-based Faithful Explanations with Word Salience

Pretrained transformer-based models such as BERT have demonstrated state-of-the-art predictive performance when adapted into a range of natural language processing tasks. An open problem is how to improve the faithfulness of explanations (rationales) for the predictions of these models. In this pape...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-08
Main Authors: Chrysostomou, George, Aletras, Nikolaos
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pretrained transformer-based models such as BERT have demonstrated state-of-the-art predictive performance when adapted into a range of natural language processing tasks. An open problem is how to improve the faithfulness of explanations (rationales) for the predictions of these models. In this paper, we hypothesize that salient information extracted a priori from the training data can complement the task-specific information learned by the model during fine-tuning on a downstream task. In this way, we aim to help BERT not to forget assigning importance to informative input tokens when making predictions by proposing SaLoss; an auxiliary loss function for guiding the multi-head attention mechanism during training to be close to salient information extracted a priori using TextRank. Experiments for explanation faithfulness across five datasets, show that models trained with SaLoss consistently provide more faithful explanations across four different feature attribution methods compared to vanilla BERT. Using the rationales extracted from vanilla BERT and SaLoss models to train inherently faithful classifiers, we further show that the latter result in higher predictive performance in downstream tasks.
ISSN:2331-8422