Loading…
Diversity and consistency embedding learning for multi-view subspace clustering
With the emergence of multi-view data, many multi-view clustering methods have been developed due to the effectiveness of exploiting the complementary information of multi-view data. However, most existing multi-view clustering methods have the following two drawbacks: (1) they usually explore the r...
Saved in:
Published in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2021-10, Vol.51 (10), p.6771-6784 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the emergence of multi-view data, many multi-view clustering methods have been developed due to the effectiveness of exploiting the complementary information of multi-view data. However, most existing multi-view clustering methods have the following two drawbacks: (1) they usually explore the relationships between samples in the original space, where the high-dimensional features contain noise and outliers; (2) they only pay attention to exploring the consistency or enhancing the diversity of different views, such that the multi-view information cannot be completely utilized. In this paper, we propose a novel multi-view subspace clustering method, namely
Diversity and Consistency Embedding Learning
(DCEL), which learns a better affinity matrix in a learned latent embedding space while simultaneously considering diversity and consistency of multi-view data. Specifically, by leveraging a projection method, the multi-view data in the latent embedding space can be learned. Then, with the self-expression property, we seek a shared consistent representation among all views and a set of diverse representations of each view to better learn an affinity matrix in the latent embedding space. Furthermore, we develop an optimization scheme based on the alternating direction method of multipliers (ADMM) to solve the proposed method. Experimental evaluations on five benchmark datasets show the superiority of our method, compared with two single-view clustering methods and some state-of-the-art multi-view clustering methods. |
---|---|
ISSN: | 0924-669X 1573-7497 |
DOI: | 10.1007/s10489-020-02126-z |