Loading…

Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables

We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, w...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2021-08, Vol.104 (4), p.1, Article 044046
Main Authors: Barbero G., J. Fernando, Margalef-Bentabol, Juan, Varo, Valle, Villaseñor, Eduardo J. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, we discuss some of the physical implications derived from this equivalence in the context of singularity identification through curvature invariants.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.104.044046