Loading…

Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables

We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, w...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2021-08, Vol.104 (4), p.1, Article 044046
Main Authors: Barbero G., J. Fernando, Margalef-Bentabol, Juan, Varo, Valle, Villaseñor, Eduardo J. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93
cites cdi_FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93
container_end_page
container_issue 4
container_start_page 1
container_title Physical review. D
container_volume 104
creator Barbero G., J. Fernando
Margalef-Bentabol, Juan
Varo, Valle
Villaseñor, Eduardo J. S.
description We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, we discuss some of the physical implications derived from this equivalence in the context of singularity identification through curvature invariants.
doi_str_mv 10.1103/PhysRevD.104.044046
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2571136017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571136017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGo_gZeA125NdrNZc5T6FwoW0avLJJ21KW1Sk7TSb2901dM83vsxwzxCzjmbcM6qy_nyEJ9xfzPhTEyYEEzIIzIoRcMKxkp1_K85OyWjGFcsS8lUw_mAvM1hDck6S98D7G060E-bltR5t8EUrMnOmCYfovVuTMEtqPY7t4BgMVLraE_9BMY7hyZlkO5zDnqN8YycdLCOOPqdQ_J6d_syfShmT_eP0-tZYaqyTEXDQYCpAaUyqAzoTtWNFrJiki9Uo0qAWtS1xBLrK2U0aGwUGtlxrTAT1ZBc9Hu3wX_sMKZ25XfB5ZNtWedHK8l4k6mqp0zwMQbs2m2wGwiHlrP2u8v2r8tsiLbvsvoCTatqxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571136017</pqid></control><display><type>article</type><title>Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Barbero G., J. Fernando ; Margalef-Bentabol, Juan ; Varo, Valle ; Villaseñor, Eduardo J. S.</creator><creatorcontrib>Barbero G., J. Fernando ; Margalef-Bentabol, Juan ; Varo, Valle ; Villaseñor, Eduardo J. S.</creatorcontrib><description>We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, we discuss some of the physical implications derived from this equivalence in the context of singularity identification through curvature invariants.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.104.044046</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Equivalence ; Mathematical analysis</subject><ispartof>Physical review. D, 2021-08, Vol.104 (4), p.1, Article 044046</ispartof><rights>Copyright American Physical Society Aug 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93</citedby><cites>FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93</cites><orcidid>0000-0003-0118-6284 ; 0000-0001-7854-8146 ; 0000-0002-6524-4298 ; 0000-0003-2125-6171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Barbero G., J. Fernando</creatorcontrib><creatorcontrib>Margalef-Bentabol, Juan</creatorcontrib><creatorcontrib>Varo, Valle</creatorcontrib><creatorcontrib>Villaseñor, Eduardo J. S.</creatorcontrib><title>Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables</title><title>Physical review. D</title><description>We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, we discuss some of the physical implications derived from this equivalence in the context of singularity identification through curvature invariants.</description><subject>Equivalence</subject><subject>Mathematical analysis</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWGo_gZeA125NdrNZc5T6FwoW0avLJJ21KW1Sk7TSb2901dM83vsxwzxCzjmbcM6qy_nyEJ9xfzPhTEyYEEzIIzIoRcMKxkp1_K85OyWjGFcsS8lUw_mAvM1hDck6S98D7G060E-bltR5t8EUrMnOmCYfovVuTMEtqPY7t4BgMVLraE_9BMY7hyZlkO5zDnqN8YycdLCOOPqdQ_J6d_syfShmT_eP0-tZYaqyTEXDQYCpAaUyqAzoTtWNFrJiki9Uo0qAWtS1xBLrK2U0aGwUGtlxrTAT1ZBc9Hu3wX_sMKZ25XfB5ZNtWedHK8l4k6mqp0zwMQbs2m2wGwiHlrP2u8v2r8tsiLbvsvoCTatqxQ</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Barbero G., J. Fernando</creator><creator>Margalef-Bentabol, Juan</creator><creator>Varo, Valle</creator><creator>Villaseñor, Eduardo J. S.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0118-6284</orcidid><orcidid>https://orcid.org/0000-0001-7854-8146</orcidid><orcidid>https://orcid.org/0000-0002-6524-4298</orcidid><orcidid>https://orcid.org/0000-0003-2125-6171</orcidid></search><sort><creationdate>20210815</creationdate><title>Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables</title><author>Barbero G., J. Fernando ; Margalef-Bentabol, Juan ; Varo, Valle ; Villaseñor, Eduardo J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Equivalence</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbero G., J. Fernando</creatorcontrib><creatorcontrib>Margalef-Bentabol, Juan</creatorcontrib><creatorcontrib>Varo, Valle</creatorcontrib><creatorcontrib>Villaseñor, Eduardo J. S.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbero G., J. Fernando</au><au>Margalef-Bentabol, Juan</au><au>Varo, Valle</au><au>Villaseñor, Eduardo J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables</atitle><jtitle>Physical review. D</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>104</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>044046</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, we discuss some of the physical implications derived from this equivalence in the context of singularity identification through curvature invariants.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.104.044046</doi><orcidid>https://orcid.org/0000-0003-0118-6284</orcidid><orcidid>https://orcid.org/0000-0001-7854-8146</orcidid><orcidid>https://orcid.org/0000-0002-6524-4298</orcidid><orcidid>https://orcid.org/0000-0003-2125-6171</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2021-08, Vol.104 (4), p.1, Article 044046
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2571136017
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Equivalence
Mathematical analysis
title Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Palatini%20gravity%20with%20nonmetricity,%20torsion,%20and%20boundaries%20in%20metric%20and%20connection%20variables&rft.jtitle=Physical%20review.%20D&rft.au=Barbero%20G.,%20J.%20Fernando&rft.date=2021-08-15&rft.volume=104&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=044046&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.104.044046&rft_dat=%3Cproquest_cross%3E2571136017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571136017&rft_id=info:pmid/&rfr_iscdi=true