Loading…
Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables
We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, w...
Saved in:
Published in: | Physical review. D 2021-08, Vol.104 (4), p.1, Article 044046 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93 |
container_end_page | |
container_issue | 4 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 104 |
creator | Barbero G., J. Fernando Margalef-Bentabol, Juan Varo, Valle Villaseñor, Eduardo J. S. |
description | We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, we discuss some of the physical implications derived from this equivalence in the context of singularity identification through curvature invariants. |
doi_str_mv | 10.1103/PhysRevD.104.044046 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2571136017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571136017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGo_gZeA125NdrNZc5T6FwoW0avLJJ21KW1Sk7TSb2901dM83vsxwzxCzjmbcM6qy_nyEJ9xfzPhTEyYEEzIIzIoRcMKxkp1_K85OyWjGFcsS8lUw_mAvM1hDck6S98D7G060E-bltR5t8EUrMnOmCYfovVuTMEtqPY7t4BgMVLraE_9BMY7hyZlkO5zDnqN8YycdLCOOPqdQ_J6d_syfShmT_eP0-tZYaqyTEXDQYCpAaUyqAzoTtWNFrJiki9Uo0qAWtS1xBLrK2U0aGwUGtlxrTAT1ZBc9Hu3wX_sMKZ25XfB5ZNtWedHK8l4k6mqp0zwMQbs2m2wGwiHlrP2u8v2r8tsiLbvsvoCTatqxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571136017</pqid></control><display><type>article</type><title>Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Barbero G., J. Fernando ; Margalef-Bentabol, Juan ; Varo, Valle ; Villaseñor, Eduardo J. S.</creator><creatorcontrib>Barbero G., J. Fernando ; Margalef-Bentabol, Juan ; Varo, Valle ; Villaseñor, Eduardo J. S.</creatorcontrib><description>We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, we discuss some of the physical implications derived from this equivalence in the context of singularity identification through curvature invariants.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.104.044046</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Equivalence ; Mathematical analysis</subject><ispartof>Physical review. D, 2021-08, Vol.104 (4), p.1, Article 044046</ispartof><rights>Copyright American Physical Society Aug 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93</citedby><cites>FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93</cites><orcidid>0000-0003-0118-6284 ; 0000-0001-7854-8146 ; 0000-0002-6524-4298 ; 0000-0003-2125-6171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Barbero G., J. Fernando</creatorcontrib><creatorcontrib>Margalef-Bentabol, Juan</creatorcontrib><creatorcontrib>Varo, Valle</creatorcontrib><creatorcontrib>Villaseñor, Eduardo J. S.</creatorcontrib><title>Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables</title><title>Physical review. D</title><description>We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, we discuss some of the physical implications derived from this equivalence in the context of singularity identification through curvature invariants.</description><subject>Equivalence</subject><subject>Mathematical analysis</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWGo_gZeA125NdrNZc5T6FwoW0avLJJ21KW1Sk7TSb2901dM83vsxwzxCzjmbcM6qy_nyEJ9xfzPhTEyYEEzIIzIoRcMKxkp1_K85OyWjGFcsS8lUw_mAvM1hDck6S98D7G060E-bltR5t8EUrMnOmCYfovVuTMEtqPY7t4BgMVLraE_9BMY7hyZlkO5zDnqN8YycdLCOOPqdQ_J6d_syfShmT_eP0-tZYaqyTEXDQYCpAaUyqAzoTtWNFrJiki9Uo0qAWtS1xBLrK2U0aGwUGtlxrTAT1ZBc9Hu3wX_sMKZ25XfB5ZNtWedHK8l4k6mqp0zwMQbs2m2wGwiHlrP2u8v2r8tsiLbvsvoCTatqxQ</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Barbero G., J. Fernando</creator><creator>Margalef-Bentabol, Juan</creator><creator>Varo, Valle</creator><creator>Villaseñor, Eduardo J. S.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0118-6284</orcidid><orcidid>https://orcid.org/0000-0001-7854-8146</orcidid><orcidid>https://orcid.org/0000-0002-6524-4298</orcidid><orcidid>https://orcid.org/0000-0003-2125-6171</orcidid></search><sort><creationdate>20210815</creationdate><title>Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables</title><author>Barbero G., J. Fernando ; Margalef-Bentabol, Juan ; Varo, Valle ; Villaseñor, Eduardo J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Equivalence</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbero G., J. Fernando</creatorcontrib><creatorcontrib>Margalef-Bentabol, Juan</creatorcontrib><creatorcontrib>Varo, Valle</creatorcontrib><creatorcontrib>Villaseñor, Eduardo J. S.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbero G., J. Fernando</au><au>Margalef-Bentabol, Juan</au><au>Varo, Valle</au><au>Villaseñor, Eduardo J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables</atitle><jtitle>Physical review. D</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>104</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>044046</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We prove the equivalence in the covariant phase space of the metric and connection formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with boundary. To this end, we will rely on the cohomological approach provided by the relative bicomplex framework. Finally, we discuss some of the physical implications derived from this equivalence in the context of singularity identification through curvature invariants.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.104.044046</doi><orcidid>https://orcid.org/0000-0003-0118-6284</orcidid><orcidid>https://orcid.org/0000-0001-7854-8146</orcidid><orcidid>https://orcid.org/0000-0002-6524-4298</orcidid><orcidid>https://orcid.org/0000-0003-2125-6171</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-08, Vol.104 (4), p.1, Article 044046 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2571136017 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Equivalence Mathematical analysis |
title | Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Palatini%20gravity%20with%20nonmetricity,%20torsion,%20and%20boundaries%20in%20metric%20and%20connection%20variables&rft.jtitle=Physical%20review.%20D&rft.au=Barbero%20G.,%20J.%20Fernando&rft.date=2021-08-15&rft.volume=104&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=044046&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.104.044046&rft_dat=%3Cproquest_cross%3E2571136017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-71a4ac5ae69ce9cabf957b463061d9792aa54556e2e589cbabe79ec6f1b9e1d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571136017&rft_id=info:pmid/&rfr_iscdi=true |