Loading…

Laser cladding of vanadium carbide interlayer for CVD diamond growth on steel substrate

The chemical vapor deposition of diamond film on steel substrate remains with main drawbacks demanding a proper solution. Some proposed interlayers tackled with the high carbon diffusivity into steel and with the graphitic sp2 bonds catalyzed by transition metal. However, the large mismatch of the c...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2021-09, Vol.421, p.127387, Article 127387
Main Authors: Martins, R.L., Damm, D.D., Volu, R.M., Pinheiro, R.A., Rosa, F.M., Trava-Airoldi, V.J., de Vasconcelos, G., Barquete, D.M., Corat, E.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The chemical vapor deposition of diamond film on steel substrate remains with main drawbacks demanding a proper solution. Some proposed interlayers tackled with the high carbon diffusivity into steel and with the graphitic sp2 bonds catalyzed by transition metal. However, the large mismatch of the coefficient of thermal expansion between steel and diamond produces cracked and delaminated diamond films. Thermodiffused vanadium carbide (TDVC) interlayer for straight CVD diamond deposition on steel, showed disruptive results; nevertheless, the coating thickening is limited to substrate with high carbon content and low alloy steel. This work introduces the use of laser cladding (LC) to form an intermediate layer of vanadium carbide (VC) from V4C3 powder. The LC process has a short cycle time and a high VC growth rate (5.6 μm/min). Comparing with TDVC, it represents a reduction of approximately 26 times in the process cycle time. We used AISI D6 steel as substrate and overlapped VC layers to raise the coat thickness up to 25 μm. The layers showed good adherence, low porosity, and the formation of V8C7 phase. Diamond films 2.8 μm thick were deposited by hot filament chemical vapor deposition (HFCVD) at 700 °C. The Raman spectroscopy of the diamond film on four overlapped VC layers (25 μm thick) showed a compressive residual stress of 2.7 GPa. The residual stress reduction was 1.8 GPa, when compared with the 7 μm thick single cladded VC layer. •Laser cladding applied to vanadium carbide deposition•Laser cladding vanadium carbide interlayer mitigating residual stress in diamond film•Laser cladding vanadium carbide coating as excellent carbon diffusional barrier•CVD diamond deposition on tool steel•High quality and adhesion of hot filament CVD diamond film
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2021.127387