Loading…
On classification of m-dimensional algebras
A constructive approach to the classification and invariance problems, with respect to basis changes, of the finite dimensional algebras is offered. A construction of an invariant open, dense (in the Zariski topology) subset of the space of structure constants of algebras is given. A classification...
Saved in:
Published in: | Journal of physics. Conference series 2017-03, Vol.819 (1), p.12012 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A constructive approach to the classification and invariance problems, with respect to basis changes, of the finite dimensional algebras is offered. A construction of an invariant open, dense (in the Zariski topology) subset of the space of structure constants of algebras is given. A classification of all algebras with structure constants from this dense set is given by providing canonical representatives of their orbits. A finite system of generators for the corresponding field of invariant rational functions of structure constants is shown. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/819/1/012012 |