Loading…
Calculation of Coster-Kronig energies and transition probabilities by linear interpolation method
The X-ray emission spectrum consists of two types of spectral lines heaving different origins. The diagram lines originate because of transitions in singly ionized atom, while the nondiagram lines or satellites originate due to transitions in doubly or multiply ionized atom. The X- ray satellite ene...
Saved in:
Published in: | Journal of physics. Conference series 2016-10, Vol.755 (1), p.12014 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The X-ray emission spectrum consists of two types of spectral lines heaving different origins. The diagram lines originate because of transitions in singly ionized atom, while the nondiagram lines or satellites originate due to transitions in doubly or multiply ionized atom. The X- ray satellite energy is the difference between the energies of initial and final states which are both doubly or multiply ionized. Thus, the satellite has a different energy than the energy of the X-ray diagram line. Once the singly ionized state has been created, it is the probability of a particular subsequent process that will lead to the formation of two-hole state. The single hole may get converted through a Coster-Kronig transition to a double hole state. The probability of formation of double hole state via this process is written as σ.σ', where σ is the probability of creation of single hole state and σ' is the probability of the Coster-Kronig transition. The value of σ' can be taken from the tables of Chen et al. [1], who have presented the calculated values of σ' for almost all possible Coster-Kronig transitions in some elements. The energies of the satellites can be calculated by using the tables of Parente et al. [2]. Both of these tables do not give values for all the elements. The aim of the present work is to show that the values for other elements, for which values are not listed by Chen et al. and Parente et al., can be calculated by linear interpolation method. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/755/1/012014 |