Loading…
Full rainbow matchings in graphs and hypergraphs
Let G be a simple graph that is properly edge-coloured with m colours and let \[\mathcal{M} = \{ {M_1},...,{M_m}\} \] be the set of m matchings induced by the colours in G . Suppose that \[m \leqslant n - {n^c}\] , where \[c > 9/10\] , and every matching in \[\mathcal{M}\] has size n . Then G con...
Saved in:
Published in: | Combinatorics, probability & computing probability & computing, 2021-09, Vol.30 (5), p.762-780 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
G
be a simple graph that is properly edge-coloured with
m
colours and let
\[\mathcal{M} = \{ {M_1},...,{M_m}\} \]
be the set of
m
matchings induced by the colours in
G
. Suppose that
\[m \leqslant n - {n^c}\]
, where
\[c > 9/10\]
, and every matching in
\[\mathcal{M}\]
has size
n
. Then
G
contains a full rainbow matching,
i.e.
a matching that contains exactly one edge from
M
i
for each
\[1 \leqslant i \leqslant m\]
. This answers an open problem of Pokrovskiy and gives an affirmative answer to a generalization of a special case of a conjecture of Aharoni and Berger. Related results are also found for multigraphs with edges of bounded multiplicity, and for hypergraphs.
Finally, we provide counterexamples to several conjectures on full rainbow matchings made by Aharoni and Berger. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548320000620 |