Loading…

Full rainbow matchings in graphs and hypergraphs

Let G be a simple graph that is properly edge-coloured with m colours and let \[\mathcal{M} = \{ {M_1},...,{M_m}\} \] be the set of m matchings induced by the colours in G . Suppose that \[m \leqslant n - {n^c}\] , where \[c > 9/10\] , and every matching in \[\mathcal{M}\] has size n . Then G con...

Full description

Saved in:
Bibliographic Details
Published in:Combinatorics, probability & computing probability & computing, 2021-09, Vol.30 (5), p.762-780
Main Authors: Gao, Pu, Ramadurai, Reshma, Wanless, Ian M., Wormald, Nick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-b81d93cb0b5abc534c15d5c04f4028ce8333db7d252a81d08970bdaf47f960cd3
cites cdi_FETCH-LOGICAL-c273t-b81d93cb0b5abc534c15d5c04f4028ce8333db7d252a81d08970bdaf47f960cd3
container_end_page 780
container_issue 5
container_start_page 762
container_title Combinatorics, probability & computing
container_volume 30
creator Gao, Pu
Ramadurai, Reshma
Wanless, Ian M.
Wormald, Nick
description Let G be a simple graph that is properly edge-coloured with m colours and let \[\mathcal{M} = \{ {M_1},...,{M_m}\} \] be the set of m matchings induced by the colours in G . Suppose that \[m \leqslant n - {n^c}\] , where \[c > 9/10\] , and every matching in \[\mathcal{M}\] has size n . Then G contains a full rainbow matching, i.e. a matching that contains exactly one edge from M i for each \[1 \leqslant i \leqslant m\] . This answers an open problem of Pokrovskiy and gives an affirmative answer to a generalization of a special case of a conjecture of Aharoni and Berger. Related results are also found for multigraphs with edges of bounded multiplicity, and for hypergraphs. Finally, we provide counterexamples to several conjectures on full rainbow matchings made by Aharoni and Berger.
doi_str_mv 10.1017/S0963548320000620
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577678724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577678724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-b81d93cb0b5abc534c15d5c04f4028ce8333db7d252a81d08970bdaf47f960cd3</originalsourceid><addsrcrecordid>eNplkEtLw0AUhQdRMFZ_gLsB19E778lSirVCwYW6HuaRNClpEmdSpP_ehLjzbg6X83EOHITuCTwSIOrpAwrJBNeMwnSSwgXKCJdFTolklyib7Xz2r9FNSoeJEUJChmBzalscbdO5_gcf7ejrptsn3HR4H-1QJ2y7gOvzUMblv0VXlW1TefenK_S1eflcb_Pd--vb-nmXe6rYmDtNQsG8Ayes84JxT0QQHnjFgWpfasZYcCpQQe2Egi4UuGArrqpCgg9shR6W3CH236cyjebQn2I3VRoqlJJKK8oniiyUj31KsazMEJujjWdDwMzDmH_DsF-xEVRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577678724</pqid></control><display><type>article</type><title>Full rainbow matchings in graphs and hypergraphs</title><source>Cambridge University Press</source><creator>Gao, Pu ; Ramadurai, Reshma ; Wanless, Ian M. ; Wormald, Nick</creator><creatorcontrib>Gao, Pu ; Ramadurai, Reshma ; Wanless, Ian M. ; Wormald, Nick</creatorcontrib><description>Let G be a simple graph that is properly edge-coloured with m colours and let \[\mathcal{M} = \{ {M_1},...,{M_m}\} \] be the set of m matchings induced by the colours in G . Suppose that \[m \leqslant n - {n^c}\] , where \[c &gt; 9/10\] , and every matching in \[\mathcal{M}\] has size n . Then G contains a full rainbow matching, i.e. a matching that contains exactly one edge from M i for each \[1 \leqslant i \leqslant m\] . This answers an open problem of Pokrovskiy and gives an affirmative answer to a generalization of a special case of a conjecture of Aharoni and Berger. Related results are also found for multigraphs with edges of bounded multiplicity, and for hypergraphs. Finally, we provide counterexamples to several conjectures on full rainbow matchings made by Aharoni and Berger.</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548320000620</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Combinatorics ; Graph coloring ; Graph theory ; Graphs ; Matching</subject><ispartof>Combinatorics, probability &amp; computing, 2021-09, Vol.30 (5), p.762-780</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-b81d93cb0b5abc534c15d5c04f4028ce8333db7d252a81d08970bdaf47f960cd3</citedby><cites>FETCH-LOGICAL-c273t-b81d93cb0b5abc534c15d5c04f4028ce8333db7d252a81d08970bdaf47f960cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gao, Pu</creatorcontrib><creatorcontrib>Ramadurai, Reshma</creatorcontrib><creatorcontrib>Wanless, Ian M.</creatorcontrib><creatorcontrib>Wormald, Nick</creatorcontrib><title>Full rainbow matchings in graphs and hypergraphs</title><title>Combinatorics, probability &amp; computing</title><description>Let G be a simple graph that is properly edge-coloured with m colours and let \[\mathcal{M} = \{ {M_1},...,{M_m}\} \] be the set of m matchings induced by the colours in G . Suppose that \[m \leqslant n - {n^c}\] , where \[c &gt; 9/10\] , and every matching in \[\mathcal{M}\] has size n . Then G contains a full rainbow matching, i.e. a matching that contains exactly one edge from M i for each \[1 \leqslant i \leqslant m\] . This answers an open problem of Pokrovskiy and gives an affirmative answer to a generalization of a special case of a conjecture of Aharoni and Berger. Related results are also found for multigraphs with edges of bounded multiplicity, and for hypergraphs. Finally, we provide counterexamples to several conjectures on full rainbow matchings made by Aharoni and Berger.</description><subject>Combinatorics</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Matching</subject><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkEtLw0AUhQdRMFZ_gLsB19E778lSirVCwYW6HuaRNClpEmdSpP_ehLjzbg6X83EOHITuCTwSIOrpAwrJBNeMwnSSwgXKCJdFTolklyib7Xz2r9FNSoeJEUJChmBzalscbdO5_gcf7ejrptsn3HR4H-1QJ2y7gOvzUMblv0VXlW1TefenK_S1eflcb_Pd--vb-nmXe6rYmDtNQsG8Ayes84JxT0QQHnjFgWpfasZYcCpQQe2Egi4UuGArrqpCgg9shR6W3CH236cyjebQn2I3VRoqlJJKK8oniiyUj31KsazMEJujjWdDwMzDmH_DsF-xEVRs</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Gao, Pu</creator><creator>Ramadurai, Reshma</creator><creator>Wanless, Ian M.</creator><creator>Wormald, Nick</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>Full rainbow matchings in graphs and hypergraphs</title><author>Gao, Pu ; Ramadurai, Reshma ; Wanless, Ian M. ; Wormald, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-b81d93cb0b5abc534c15d5c04f4028ce8333db7d252a81d08970bdaf47f960cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combinatorics</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Pu</creatorcontrib><creatorcontrib>Ramadurai, Reshma</creatorcontrib><creatorcontrib>Wanless, Ian M.</creatorcontrib><creatorcontrib>Wormald, Nick</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Combinatorics, probability &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Pu</au><au>Ramadurai, Reshma</au><au>Wanless, Ian M.</au><au>Wormald, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full rainbow matchings in graphs and hypergraphs</atitle><jtitle>Combinatorics, probability &amp; computing</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>30</volume><issue>5</issue><spage>762</spage><epage>780</epage><pages>762-780</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>Let G be a simple graph that is properly edge-coloured with m colours and let \[\mathcal{M} = \{ {M_1},...,{M_m}\} \] be the set of m matchings induced by the colours in G . Suppose that \[m \leqslant n - {n^c}\] , where \[c &gt; 9/10\] , and every matching in \[\mathcal{M}\] has size n . Then G contains a full rainbow matching, i.e. a matching that contains exactly one edge from M i for each \[1 \leqslant i \leqslant m\] . This answers an open problem of Pokrovskiy and gives an affirmative answer to a generalization of a special case of a conjecture of Aharoni and Berger. Related results are also found for multigraphs with edges of bounded multiplicity, and for hypergraphs. Finally, we provide counterexamples to several conjectures on full rainbow matchings made by Aharoni and Berger.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0963548320000620</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-5483
ispartof Combinatorics, probability & computing, 2021-09, Vol.30 (5), p.762-780
issn 0963-5483
1469-2163
language eng
recordid cdi_proquest_journals_2577678724
source Cambridge University Press
subjects Combinatorics
Graph coloring
Graph theory
Graphs
Matching
title Full rainbow matchings in graphs and hypergraphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20rainbow%20matchings%20in%20graphs%20and%20hypergraphs&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=Gao,%20Pu&rft.date=2021-09-01&rft.volume=30&rft.issue=5&rft.spage=762&rft.epage=780&rft.pages=762-780&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548320000620&rft_dat=%3Cproquest_cross%3E2577678724%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-b81d93cb0b5abc534c15d5c04f4028ce8333db7d252a81d08970bdaf47f960cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577678724&rft_id=info:pmid/&rfr_iscdi=true