Loading…

Mapping depths of groundwater-level architecture: implications on modest groundwater-level declines and failures of boreholes in sedimentary environs

Due to financial wherewithal, only shallow wells, which are extremely prone to seasonal groundwater decline, are constructed in the study area. Generally, new groundwater wells are designed to follow the criteria of the old wells, which may be vulnerable to substantial groundwater depletion through...

Full description

Saved in:
Bibliographic Details
Published in:Acta geophysica 2021-10, Vol.69 (5), p.1919-1932
Main Authors: George, N. J., Ekanem, A. M., Thomas, J. E., Ekong, S. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to financial wherewithal, only shallow wells, which are extremely prone to seasonal groundwater decline, are constructed in the study area. Generally, new groundwater wells are designed to follow the criteria of the old wells, which may be vulnerable to substantial groundwater depletion through water-level decline. Going by this, newer groundwater wells constructed near older ones are 100% susceptible to the uninvestigated depletion associated with the older ones. The method used integrates vertical electrical sounding (VES) technique employing the Schlumberger electrode configuration, which measured the resistivity of geologic layers, depths and thickness with hydrogeological information, which constrained the VES interpretation. The aim was to check the spread of groundwater depth–water table ratios for the shallow aquifers. The 1-D resistivity analysis shows that the topsoil/motley topsoil has resistivity ranging from 71.8 to 1964.1 Ω m and mean 586.9 Ω m , while its depth ranges between 0.5 and 11.3 m with mean value of 2.8 m. In layer 2, while the resistivity spans between 71.3 and 1488.6 Ω m with mean value 444.6 Ω m , the depth and thickness, respectively, have a range and mean value of 2.0–170.4 m and 41.9 m and 3.4–112.2 m and 41.0 m. The third layer resistivity ranges from 7.5 to 2332.5 Ω m with mean value of 797.2 m. The depth of burial and the thickness of the third layer, respectively, have mean of 63.0 m and 74.6 m and range of 40.3–106.3 m and 50.1–115.6 m. The fourth layer penetrated by current at 150 m half of current electrode separation has undefined thickness and depth with respective resistivity range and mean of 25.3–2385.3 Ω m and 508.4 Ω m . Based on the resistivity results and nearby borehole data, sizeable numbers of borehole in the area have depths (between 40 and 80 m) that are remarkably greater than the water table depths (1.4–37.6 m). A few boreholes have depths that are sparingly greater than water levels and by the present climate change; they are not likely to be depleted by virtue of water-level declines as the well depth–water table depth ratios are still sustainable to ward off the depletion associated with water-level decline. The results indicate the spatial spread of shallow hydrogeological units as well as the water-level architecture, which is believed to provide useful information that will complement lithological logs while planning for newer groundwater well development in the area.
ISSN:1895-6572
1895-7455
DOI:10.1007/s11600-021-00663-w