Loading…
Beta Jacobi Ensembles and Associated Jacobi Polynomials
Beta ensembles on the real line with three classical weights (Gaussian, Laguerre and Jacobi) are now realized as the eigenvalues of certain tridiagonal random matrices. The paper deals with beta Jacobi ensembles, the type with the Jacobi weight. Making use of the random matrix model, we show that in...
Saved in:
Published in: | Journal of statistical physics 2021-10, Vol.185 (1), Article 4 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Beta ensembles on the real line with three classical weights (Gaussian, Laguerre and Jacobi) are now realized as the eigenvalues of certain tridiagonal random matrices. The paper deals with beta Jacobi ensembles, the type with the Jacobi weight. Making use of the random matrix model, we show that in the regime where
β
N
→
c
o
n
s
t
∈
[
0
,
∞
)
, with
N
the system size, the empirical distribution of the eigenvalues converges weakly to a limiting measure which belongs to a new class of probability measures of associated Jacobi polynomials. This is analogous to the existing results for the other two classical weights. We also study the limiting behavior of the empirical measure process of beta Jacobi processes in the same regime and obtain a dynamical version of the above. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-021-02832-z |