Loading…

Experimental investigation of liquid water in flow field of proton exchange membrane fuel cell by combining X-ray with EIS technologies

The flow field is a pivotal part to manage the transport of water and gas in proton exchange membrane fuel cell. However, the reported water measurement methods (e.g., X-ray and electrochemical impedance spectroscopy (EIS)) cannot give a comprehensive understanding water distribution in the flow fie...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Technological sciences 2021-10, Vol.64 (10), p.2153-2165
Main Authors: Tongsh, Chasen, Liang, YiQi, Xie, Xu, Li, LinCai, Liu, Zhi, Du, Qing, Jiao, Kui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The flow field is a pivotal part to manage the transport of water and gas in proton exchange membrane fuel cell. However, the reported water measurement methods (e.g., X-ray and electrochemical impedance spectroscopy (EIS)) cannot give a comprehensive understanding water distribution in the flow field, resulting in challenges in optimizing the channel design and enhancing fuel cell performance. Therefore, we propose a water measurement method combining the X-ray radiography with EIS to investigate the effect of different operating conditions on the growth law and distribution of liquid water in parallel and serpentine flow fields. The attenuation coefficient of liquid water to X-ray is calibrated with constant tube-current and tube-voltage of X-ray generator. Besides, the parallel flow field with hydrophobic treatment is studied. The results show that the water accumulation of the parallel flow field is far more than the serpentine flow field, and the water content of the middle region is higher than that of other regions in the parallel flow field. Furthermore, operating conditions (cathode inlet gas flow rate, inlet gas humidity, and back pressure) have little effect on the liquid water content of the middle region in the parallel flow field. The polarization curve, EIS result, and X-ray radiography show that the performance and water drainage capacity of the hydrophobic parallel flow field are better than the normal one.
ISSN:1674-7321
1869-1900
DOI:10.1007/s11431-021-1815-6