Loading…

Existence and local uniqueness of normalized solutions for two-component Bose–Einstein condensates

In this paper, we consider the following two-component Bose–Einstein condensates (BEC) - Δ u 1 + V 1 ( x ) u 1 = a 1 u 1 3 + μ u 1 + β u 1 u 2 2 in R 2 , - Δ u 2 + V 2 ( x ) u 2 = a 2 u 2 3 + μ u 2 + β u 1 2 u 2 in R 2 , with the constraint ∫ R 2 ( u 1 2 + u 2 2 ) d x = 1 . The existence and local u...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Physik 2021-12, Vol.72 (6), Article 189
Main Authors: Guo, Qing, Xie, Huafei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we consider the following two-component Bose–Einstein condensates (BEC) - Δ u 1 + V 1 ( x ) u 1 = a 1 u 1 3 + μ u 1 + β u 1 u 2 2 in R 2 , - Δ u 2 + V 2 ( x ) u 2 = a 2 u 2 3 + μ u 2 + β u 1 2 u 2 in R 2 , with the constraint ∫ R 2 ( u 1 2 + u 2 2 ) d x = 1 . The existence and local uniqueness of k -peak solutions are given by finite-dimensional reduction and local Pohozaev identities, which gives the description of excited state of BEC phenomenon stated and generalizes the results in [ 15 ] about the ground states.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-021-01619-2