Loading…

Geometry-based Graph Pruning for Lifelong SLAM

Lifelong SLAM considers long-term operation of a robot where already mapped locations are revisited many times in changing environments. As a result, traditional graph-based SLAM approaches eventually become extremely slow due to the continuous growth of the graph and the loss of sparsity. Both prob...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-10
Main Authors: Kurz, Gerhard, Holoch, Matthias, Biber, Peter
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lifelong SLAM considers long-term operation of a robot where already mapped locations are revisited many times in changing environments. As a result, traditional graph-based SLAM approaches eventually become extremely slow due to the continuous growth of the graph and the loss of sparsity. Both problems can be addressed by a graph pruning algorithm. It carefully removes vertices and edges to keep the graph size reasonable while preserving the information needed to provide good SLAM results. We propose a novel method that considers geometric criteria for choosing the vertices to be pruned. It is efficient, easy to implement, and leads to a graph with evenly spread vertices that remain part of the robot trajectory. Furthermore, we present a novel approach of marginalization that is more robust to wrong loop closures than existing methods. The proposed algorithm is evaluated on two publicly available real-world long-term datasets and compared to the unpruned case as well as ground truth. We show that even on a long dataset (25h), our approach manages to keep the graph sparse and the speed high while still providing good accuracy (40 times speed up, 6cm map error compared to unpruned case).
ISSN:2331-8422