Loading…
Two Disjoint Alternating Paths in Bipartite Graphs
A bipartite graph B is called a brace if it is connected and every matching of size at most two in B is contained in some perfect matching of B and a cycle C in B is called conformal if B-V(C) has a perfect matching. We show that there do not exist two disjoint alternating paths that form a cross ov...
Saved in:
Published in: | arXiv.org 2021-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A bipartite graph B is called a brace if it is connected and every matching of size at most two in B is contained in some perfect matching of B and a cycle C in B is called conformal if B-V(C) has a perfect matching. We show that there do not exist two disjoint alternating paths that form a cross over a conformal cycle C in a brace B if and only if one can reduce B, by an application of a matching theoretic analogue of small clique sums, to a planar brace H in which C bounds a face. We then utilise this result and provide a polynomial time algorithm which solves the 2-linkage problem for alternating paths in bipartite graphs with perfect matchings. |
---|---|
ISSN: | 2331-8422 |