Loading…
Two Disjoint Alternating Paths in Bipartite Graphs
A bipartite graph B is called a brace if it is connected and every matching of size at most two in B is contained in some perfect matching of B and a cycle C in B is called conformal if B-V(C) has a perfect matching. We show that there do not exist two disjoint alternating paths that form a cross ov...
Saved in:
Published in: | arXiv.org 2021-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Giannopoulou, Archontia C Wiederrecht, Sebastian |
description | A bipartite graph B is called a brace if it is connected and every matching of size at most two in B is contained in some perfect matching of B and a cycle C in B is called conformal if B-V(C) has a perfect matching. We show that there do not exist two disjoint alternating paths that form a cross over a conformal cycle C in a brace B if and only if one can reduce B, by an application of a matching theoretic analogue of small clique sums, to a planar brace H in which C bounds a face. We then utilise this result and provide a polynomial time algorithm which solves the 2-linkage problem for alternating paths in bipartite graphs with perfect matchings. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2579473067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579473067</sourcerecordid><originalsourceid>FETCH-proquest_journals_25794730673</originalsourceid><addsrcrecordid>eNqNzL0KwjAUQOEgCBbtOwScC_GmaXT039Ghe8kQbUJIYu4tvr4OPoDTWT7OjFUg5abZtgALViN6IQR0GpSSFYP-nfjJoU8uEt8HsiUacvHJ74ZG5C7yg8umkCPLr8XkEVds_jABbf3rkq0v5_54a3JJr8kiDT5N30vAAZTetVqKTsv_1AfHHDOy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579473067</pqid></control><display><type>article</type><title>Two Disjoint Alternating Paths in Bipartite Graphs</title><source>ProQuest - Publicly Available Content Database</source><creator>Giannopoulou, Archontia C ; Wiederrecht, Sebastian</creator><creatorcontrib>Giannopoulou, Archontia C ; Wiederrecht, Sebastian</creatorcontrib><description>A bipartite graph B is called a brace if it is connected and every matching of size at most two in B is contained in some perfect matching of B and a cycle C in B is called conformal if B-V(C) has a perfect matching. We show that there do not exist two disjoint alternating paths that form a cross over a conformal cycle C in a brace B if and only if one can reduce B, by an application of a matching theoretic analogue of small clique sums, to a planar brace H in which C bounds a face. We then utilise this result and provide a polynomial time algorithm which solves the 2-linkage problem for alternating paths in bipartite graphs with perfect matchings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Graph theory ; Graphs ; Matching ; Polynomials</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2579473067?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25735,36994,44572</link.rule.ids></links><search><creatorcontrib>Giannopoulou, Archontia C</creatorcontrib><creatorcontrib>Wiederrecht, Sebastian</creatorcontrib><title>Two Disjoint Alternating Paths in Bipartite Graphs</title><title>arXiv.org</title><description>A bipartite graph B is called a brace if it is connected and every matching of size at most two in B is contained in some perfect matching of B and a cycle C in B is called conformal if B-V(C) has a perfect matching. We show that there do not exist two disjoint alternating paths that form a cross over a conformal cycle C in a brace B if and only if one can reduce B, by an application of a matching theoretic analogue of small clique sums, to a planar brace H in which C bounds a face. We then utilise this result and provide a polynomial time algorithm which solves the 2-linkage problem for alternating paths in bipartite graphs with perfect matchings.</description><subject>Algorithms</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Matching</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzL0KwjAUQOEgCBbtOwScC_GmaXT039Ghe8kQbUJIYu4tvr4OPoDTWT7OjFUg5abZtgALViN6IQR0GpSSFYP-nfjJoU8uEt8HsiUacvHJ74ZG5C7yg8umkCPLr8XkEVds_jABbf3rkq0v5_54a3JJr8kiDT5N30vAAZTetVqKTsv_1AfHHDOy</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Giannopoulou, Archontia C</creator><creator>Wiederrecht, Sebastian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211005</creationdate><title>Two Disjoint Alternating Paths in Bipartite Graphs</title><author>Giannopoulou, Archontia C ; Wiederrecht, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25794730673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Matching</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Giannopoulou, Archontia C</creatorcontrib><creatorcontrib>Wiederrecht, Sebastian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannopoulou, Archontia C</au><au>Wiederrecht, Sebastian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Two Disjoint Alternating Paths in Bipartite Graphs</atitle><jtitle>arXiv.org</jtitle><date>2021-10-05</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>A bipartite graph B is called a brace if it is connected and every matching of size at most two in B is contained in some perfect matching of B and a cycle C in B is called conformal if B-V(C) has a perfect matching. We show that there do not exist two disjoint alternating paths that form a cross over a conformal cycle C in a brace B if and only if one can reduce B, by an application of a matching theoretic analogue of small clique sums, to a planar brace H in which C bounds a face. We then utilise this result and provide a polynomial time algorithm which solves the 2-linkage problem for alternating paths in bipartite graphs with perfect matchings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2579473067 |
source | ProQuest - Publicly Available Content Database |
subjects | Algorithms Graph theory Graphs Matching Polynomials |
title | Two Disjoint Alternating Paths in Bipartite Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Two%20Disjoint%20Alternating%20Paths%20in%20Bipartite%20Graphs&rft.jtitle=arXiv.org&rft.au=Giannopoulou,%20Archontia%20C&rft.date=2021-10-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2579473067%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25794730673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2579473067&rft_id=info:pmid/&rfr_iscdi=true |