Loading…
Long-term impact of domestic ungulates versus the local controls of the litter decomposition process in arid steppes
Aims Soil processes in arid ecosystems are strongly controlled by resource scarcity. Grazing intensification can induce changes in ecosystem processes through multiple pathways, adding new constraints to those of local conditions. We focus on grazing-induced changes in litter traits and soil environ...
Saved in:
Published in: | Plant and soil 2021-10, Vol.467 (1/2), p.483-497 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aims
Soil processes in arid ecosystems are strongly controlled by resource scarcity. Grazing intensification can induce changes in ecosystem processes through multiple pathways, adding new constraints to those of local conditions. We focus on grazing-induced changes in litter traits and soil environment that may affect litter decomposition and N dynamics in temperate grass-shrub steppes.
Methods
We performed three litterbag decomposition experiments to evaluate: i) the effect of litter traits in a common garden (ex situ), ii) the effect of soil environment using a foreign common litter substrate (in situ), and iii) the interactive effects of litter traits and soil environment (grazed
vs.
exclosure communities, reciprocal transplants in situ). Field experiments were replicated in three blocks with paired plots under a long-term exclosure (> 25 years) and under year-round sheep grazing. Local litter included mixtures of species of grasses and shrubs, separately.
Results
Grazing exclusion did not alter litter decomposition rates, either through changes in litter traits or in soil environment. Nevertheless, N released during grass litter decomposition was 286% higher in exclosures than in grazing communities. The difference was associated to changes in litter C:N ratio. The effects were maintained when results were integrated to the entire litter community.
Conclusion
Our study suggests that litter decomposition rates in arid steppes are strongly controlled by local drivers. Ungulate grazing does not have an important influence on litter mass loss, but it can exert a strong control on N flux during decomposition, by changing grass litter traits. |
---|---|
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/s11104-021-05088-4 |