Loading…

Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array

We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel est...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2021, Vol.69, p.5463-5478
Main Authors: Zhu, Yifan, Guo, Huayan, Lau, Vincent K. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel estimation approach with a traditional sparsity promoting prior model becomes invalid in the ELAA scenario due to the spatial non-stationary effects caused by the spherical wavefront and visibility region (VR) issue. We therefore propose a new structured prior with the Hidden Markov Model (HMM) to promote the structured sparsity of the spatial non-stationary ELAA channel. Based on this, a Bayesian inference problem on the posterior of the ELAA channel coefficients is formulated. In addition, we propose the turbo orthogonal approximate message passing (Turbo-OAMP) algorithm to achieve a low-complexity channel estimation. Comprehensive simulations verify that the proposed algorithm has supreme performance under spatial non-stationary ELAA channels compared to various state-of-the-art baselines.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2021.3114999