Loading…

Application of Transglutaminase Crosslinked Whey Protein–Pectin Coating Improves Egg Quality and Minimizes the Breakage and Porosity of Eggshells

It is well known that an effective way to improve the quality attributes of food is the use of coatings. Moreover, there is evidence of the use of dairy byproducts to design coatings to improve the shelf life of food products. This study was conducted to explore the effectiveness of a film forming s...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2018-12, Vol.8 (12), p.438
Main Authors: Dávalos-Saucedo, Cristian, Rossi-Márquez, Giovanna, Regalado-González, Carlos, Alonzo-Macías, Maritza, Di Pierro, Prospero
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well known that an effective way to improve the quality attributes of food is the use of coatings. Moreover, there is evidence of the use of dairy byproducts to design coatings to improve the shelf life of food products. This study was conducted to explore the effectiveness of a film forming solution containing whey protein–pectin complex enzymatically reticulated by transglutaminase (TGase) applied as a coating on eggshells to preserve the internal quality of eggs stored under environmental conditions (25 ± 1 °C and 35% HR) during 15 days storage. Eggs properties tested included yolk index, albumen and yolk pH, albumen CO2 content, water loss, shell strength, and microbial permeability through the shell. The results showed that the coating maintained a higher yolk index and albumen carbon dioxide content, reduced the weight loss and increased both albumen and yolk pH values with respect to the uncoated eggs. All coated eggshells showed greater strength than those of uncoated eggs. Moreover, by using Blue Lake dye penetration method we demonstrated that the coating reduced the Blue Lake dye penetration confirming the effectiveness of the coating on the reduction of post-wash bacterial penetration. These results suggest that the studied coating can be useful to preserve internal egg quality but also to reduce the breakage of eggshell and egg microbial contamination. Based on this result we can conclude that the coating made with whey protein–pectin crosslinked by TGase could be an effective strategy to increase the shelf life of eggs preserved in environmental conditions and to reduce economic losses due to the eggs breakage during their marketing.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings8120438