Loading…

Towards highly efficient thin-film solar cells with a graded-bandgap CZTSSe layer

A coupled optoelectronic model was implemented along with the differential evolution algorithm to assess the efficacy of grading the bandgap of the Cu2ZnSn(S Se1- )4 (CZTSSe) layer for enhancing the power conversion efficiency of thin-film CZTSSe solar cells. Both linearly and sinusoidally graded ba...

Full description

Saved in:
Bibliographic Details
Published in:JPhys Energy 2020-04, Vol.2 (2), p.25004
Main Authors: Ahmad, Faiz, Lakhtakia, Akhlesh, Anderson, Tom H, Monk, Peter B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A coupled optoelectronic model was implemented along with the differential evolution algorithm to assess the efficacy of grading the bandgap of the Cu2ZnSn(S Se1- )4 (CZTSSe) layer for enhancing the power conversion efficiency of thin-film CZTSSe solar cells. Both linearly and sinusoidally graded bandgaps were examined, with the molybdenum backreflector in the solar cell being either planar or periodically corrugated. Whereas an optimally graded bandgap can dramatically enhance the efficiency, the effect of periodically corrugating the backreflector is modest at best. An efficiency of 21.74% is predicted with sinusoidal grading of a 870 nm thick CZTSSe layer, in comparison to 12.6% efficiency achieved experimentally with a 2200 nm thick homogeneous CZTSSe layer. High electron-hole-pair generation rates in the narrow-bandgap regions and a high open-circuit voltage due to a wider bandgap close to the front and rear faces of the CZTSSe layer are responsible for the high enhancement of efficiency.
ISSN:2515-7655
2515-7655
DOI:10.1088/2515-7655/ab6f4a