Loading…

基于非线性高斯-赫尔默特模型的混合整体最小二乘估计

针对EIV模型的系数矩阵同时包含固定量和随机量的情况,通过将系数矩阵中的随机量提取出来纳入平差的随机模型,从而将EIV模型表示为非线性高斯-赫尔默特(Gauss-Herlmert,GH)模型形式,推导了混合LS-TLS(least squares-total least squares, LS-TLS)算法及其精度估计公式。算法适用于系数矩阵包含固定列、固定元素和随机元素的一般情况。模拟实例结果表明,混合LS-TLS算法与已有能够解决系数矩阵同时含固定量和随机量的结构性或加权TLS算法的估计结果一致;混合LS-TLS的估计结果统计上要优于LS或TLS估计结果。...

Full description

Saved in:
Bibliographic Details
Published in:Ce hui xue bao 2016-03, Vol.45 (3), p.291
Main Authors: 方兴, 曾文宪, 刘经南, 姚宜斌, 王勇
Format: Article
Language:chi ; eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:针对EIV模型的系数矩阵同时包含固定量和随机量的情况,通过将系数矩阵中的随机量提取出来纳入平差的随机模型,从而将EIV模型表示为非线性高斯-赫尔默特(Gauss-Herlmert,GH)模型形式,推导了混合LS-TLS(least squares-total least squares, LS-TLS)算法及其精度估计公式。算法适用于系数矩阵包含固定列、固定元素和随机元素的一般情况。模拟实例结果表明,混合LS-TLS算法与已有能够解决系数矩阵同时含固定量和随机量的结构性或加权TLS算法的估计结果一致;混合LS-TLS的估计结果统计上要优于LS或TLS估计结果。
ISSN:1001-1595
1001-1595
DOI:10.11947/j.AGCS.2016.20150157