Loading…
A linear time algorithm for the robust recoverable selection problem
The feasible solutions in the robust recoverable selection problem are subsets of size p that are to be selected from a ground set of size n. The objective is to construct a feasible solution in two sequential stages with two separate (but interleaved) cost structures. The fastest algorithm for this...
Saved in:
Published in: | Discrete Applied Mathematics 2021-11, Vol.303, p.94-107 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The feasible solutions in the robust recoverable selection problem are subsets of size p that are to be selected from a ground set of size n. The objective is to construct a feasible solution in two sequential stages with two separate (but interleaved) cost structures. The fastest algorithm for this problem in the literature up to now has quadratic running time. We improve on this by developing an algorithm with linear running time. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2020.08.012 |