Loading…
Pulsed laser deposition growth of ultra-wide bandgap GeO2 film and its optical properties
In this paper, we report the direct growth of ultra-wide bandgap GeO2 film on the m-plane sapphire substrate by pulsed laser deposition. Raman scattering and x-ray diffraction measurements confirm that the obtained GeO2 film has a (001)-oriented rutile structure mixed with the amorphous phase, and t...
Saved in:
Published in: | Applied physics letters 2021-11, Vol.119 (18) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we report the direct growth of ultra-wide bandgap GeO2 film on the m-plane sapphire substrate by pulsed laser deposition. Raman scattering and x-ray diffraction measurements confirm that the obtained GeO2 film has a (001)-oriented rutile structure mixed with the amorphous phase, and the film has an out-of-plane strain of –0.28% along the c direction. Transmittance spectra and x-ray photoelectron spectroscopy measurements determine that the transparent GeO2 film has an ultra-wide bandgap of about 5.1 eV. Room temperature photoluminescence spectrum exhibits a broad blue–green emission band dominated by two peaks at about 2.4 and 2.8 eV. With the temperature decreasing to 21 K, the peak intensities increase exponentially accompanied by a slight blue-shift in the peak position. We believe that these findings will pave the way for applications of the wide-bandgap GeO2 film in power and optoelectronic devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0071918 |