Loading…
Injective Rota–Baxter Operators of Weight Zero on F[x]
Rota–Baxter operators present a natural generalization of integration by parts formula for the integral operator. In 2015, Zheng, Guo, and Rosenkranz conjectured that every injective Rota–Baxter operator of weight zero on the polynomial algebra R [ x ] is a composition of the multiplication by a non...
Saved in:
Published in: | Mediterranean journal of mathematics 2021-12, Vol.18 (6), Article 267 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rota–Baxter operators present a natural generalization of integration by parts formula for the integral operator. In 2015, Zheng, Guo, and Rosenkranz conjectured that every injective Rota–Baxter operator of weight zero on the polynomial algebra
R
[
x
]
is a composition of the multiplication by a nonzero polynomial and a formal integration at some point. We confirm this conjecture over any field of characteristic zero. Moreover, we establish a structure of an ind-variety on the moduli space of these operators and describe an additive structure of generic modality two on it. Finally, we provide an infinitely transitive action on codimension one subsets. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-021-01909-z |