Loading…

Synergetic enhancement of strength and ductility for titanium-based composites reinforced with nickel metallized multi-walled carbon nanotubes

Poor ductility of titanium matrix composites with medium/high-strength reinforced with carbonaceous nanomaterials (eg., graphene, carbon nanotubes etc.), has seriously restricted their wide-range engineering and practical industry utility. Herein, we propose a new methodology to significantly and si...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2021-10, Vol.184, p.583-595
Main Authors: Dong, L.L., Zhang, W., Fu, Y.Q., Lu, J.W., Liu, Y., Zhang, Y.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poor ductility of titanium matrix composites with medium/high-strength reinforced with carbonaceous nanomaterials (eg., graphene, carbon nanotubes etc.), has seriously restricted their wide-range engineering and practical industry utility. Herein, we propose a new methodology to significantly and simultaneously enhance both ductility and tensile strength of the titanium matrix composites. We ball milled Ti–6Al–4V (TC4) powders with in-situ chemically synthetized Ni decorated multi-walled carbon nanotubes (i.e MWCNTs@Ni), and then sintered the composites powders using spark plasma sintering (SPS). We achieved both a significant balanced between superior strength and increased ductility of the composite using the MWCNTs@Ni nanopowders. The enhanced strength in composites is mainly attributed to the interfacial structures for effectively enhanced load transfer capability between MWCNTs@Ni and Ti matrix, e.g., the formation of coherent/semi-coherent interfaces among interfacial phases Ti2Ni, TiC and Ti matrix. Furthermore, we applied the dislocation theory to reveal the toughening mechanisms of MWCNTs@Ni in the MWCNTs@Ni/TC4 composites. This study provides a new methodology of fabricating metal matrix composites (reinforced with carbon based nanomaterial) with both high strength and good ductility. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2021.08.030