Loading…

Co/CoP Heterojunction on Hierarchically Ordered Porous Carbon as a Highly Efficient Electrocatalyst for Hydrogen and Oxygen Evolution

Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded withi...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2021-11, Vol.11 (42), p.n/a
Main Authors: Li, Wei, Liu, Jing, Guo, Peifang, Li, Haozhe, Fei, Ben, Guo, Yanhui, Pan, Hongge, Sun, Dalin, Fang, Fang, Wu, Renbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded within a hierarchically ordered macroporous‐mesoporous‐microporous carbon matrix (Co/CoP@HOMC) is rationally designed through the pyrolysis of polystyrene sphere‐templated zeolite imidazolate framework‐67 (ZIF‐67) assemblies. The combined experimental and theoretical calculations reveal that Co/CoP interfaces not only provide richly exposed active sites but also optimize hydrogen/water absorption free energy via electronic coupling, while the interconnected macroporous structure enables a superior mass transfer to all accessible active sites. As a result, the as‐developed Co/CoP@HOMC composites exhibit outstanding catalytic activity with overpotentials of only 120 and 260 mV at 10 mA cm−2 for the hydrogen evolution reaction and oxygen evolution reaction in 1.0 m KOH, respectively. Moreover, an alkaline electrolyzer constructed by Co/CoP@HOMC requires an ultralow cell voltage of 1.54 V to achieve 10 mA cm−2, outperforming that of the Pt@C||IrO2@C couple (1.64 V). Hierarchically ordered porous carbon‐supported heterostructured Co/CoP nanoparticles (Co/CoP@HOMC) are rationally designed. Owing to the synergistic coupling effect, highly exposed active sites, and enhanced mass transfer, the Co/CoP@HOMC exhibits an exceptional catalytic activity for both the hydrogen evolution reaction and the oxygen evolution reaction.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202102134