Loading…
Discrete element modeling of planetary ice analogs: mechanical behavior upon sintering
Potentially habitable icy Ocean Worlds, such as Enceladus and Europa, are scientifically compelling worlds in the solar system and high-priority exploration targets. Future robotic exploration of Enceladus and Europa by in-situ missions would require a detailed understanding of the surface material...
Saved in:
Published in: | Granular matter 2022-02, Vol.24 (1), Article 12 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Potentially habitable icy Ocean Worlds, such as Enceladus and Europa, are scientifically compelling worlds in the solar system and high-priority exploration targets. Future robotic exploration of Enceladus and Europa by in-situ missions would require a detailed understanding of the surface material and of the complex lander-surface interactions during locomotion or sampling. To date, numerical modeling approaches that provide insights into the icy terrain’s mechanical behavior have been lacking. In this work, we present a Discrete Element Model of porous planetary ice analogs that explicitly describes the microstructure and its evolution upon sintering. The model dimension is tuned following a Pareto-optimality analysis, the model parameters’ influence on the sample strength is investigated using a sensitivity analysis, and the model parameters are calibrated to experiments using a probabilistic method. The results indicate that the friction coefficient and the cohesion energy density at the particle-scale govern the macroscopic properties of the porous ice. Our model reveals a good correspondence between the macroscopic and bond strength evolutions, suggesting that the strengthening of porous ice results from the development of a large-scale network due to inter-particle bonding. This work sheds light on the multi-scale nature of the mechanics of planetary ice analogs and points to the importance of understanding surface strength evolution upon sintering to design robust robotic systems.
Graphic abstract |
---|---|
ISSN: | 1434-5021 1434-7636 |
DOI: | 10.1007/s10035-021-01167-6 |