Loading…
MRI radiomics to differentiate between low grade glioma and glioblastoma peritumoral region
Background The peritumoral region (PTR) of glioblastoma (GBM) appears as a T2W-hyperintensity and is composed of microscopic tumor and edema. Infiltrative low grade glioma (LGG) comprises tumor cells that seem similar to GBM PTR on MRI. The work here explored if a radiomics-based approach can distin...
Saved in:
Published in: | Journal of neuro-oncology 2021-11, Vol.155 (2), p.181-191 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
The peritumoral region (PTR) of glioblastoma (GBM) appears as a T2W-hyperintensity and is composed of microscopic tumor and edema. Infiltrative low grade glioma (LGG) comprises tumor cells that seem similar to GBM PTR on MRI. The work here explored if a radiomics-based approach can distinguish between the two groups (tumor and edema versus tumor alone).
Methods
Patients with GBM and LGG imaged using a 1.5 T MRI were included in the study. Image data from cases of GBM PTR, and LGG were manually segmented guided by T2W hyperintensity. A set of 91 first-order and texture features were determined from each of T1W-contrast, and T2W-FLAIR, diffusion-weighted imaging sequences. Applying filtration techniques, a total of 3822 features were obtained. Different feature reduction techniques were employed, and a subsequent model was constructed using four machine learning classifiers. Leave-one-out cross-validation was used to assess classifier performance.
Results
The analysis included 42 GBM and 36 LGG. The best performance was obtained using AdaBoost classifier using all the features with a sensitivity, specificity, accuracy, and area of curve (AUC) of 91%, 86%, 89%, and 0.96, respectively. Amongst the feature selection techniques, the recursive feature elimination technique had the best results, with an AUC ranging from 0.87 to 0.92. Evaluation with the F-test resulted in the most consistent feature selection with 3 T1W-contrast texture features chosen in over 90% of instances.
Conclusions
Quantitative analysis of conventional MRI sequences can effectively demarcate GBM PTR from LGG, which is otherwise indistinguishable on visual estimation. |
---|---|
ISSN: | 0167-594X 1573-7373 |
DOI: | 10.1007/s11060-021-03866-9 |