Loading…
Second-virial theory for shape-persistent living polymers templated by discs
Living polymers composed of non-covalently bonded building blocks with weak backbone flexibility may self-assemble into thermoresponsive lyotropic liquid crystals. We demonstrate that the reversible polymer assembly and phase behavior can be controlled by the addition of (non-adsorbing) rigid colloi...
Saved in:
Published in: | arXiv.org 2021-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Living polymers composed of non-covalently bonded building blocks with weak backbone flexibility may self-assemble into thermoresponsive lyotropic liquid crystals. We demonstrate that the reversible polymer assembly and phase behavior can be controlled by the addition of (non-adsorbing) rigid colloidal discs which act as an entropic reorienting ``template" onto the supramolecular polymers. Using a particle-based second-virial theory that correlates the various entropies associated with the polymers and discs, we demonstrate that small fractions of discotic additives promote the formation of a polymer nematic phase. At larger disc concentrations, however, the phase is disrupted by collective disc alignment in favor of a discotic nematic fluid in which the polymers are dispersed anti-nematically. We show that the anti-nematic arrangement of the polymers generates a non-exponential molecular-weight distribution and stimulates the formation of oligomeric species. At sufficient concentrations the discs facilitate a liquid-liquid phase separation which can be brought into simultaneously coexistence with the two fractionated nematic phases, providing evidence for a four-fluid coexistence in reversible shape-dissimilar hard-core mixtures without cohesive interparticle forces. We stipulate the conditions under which such a phenomenon could be found in experiment. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2111.07639 |