Loading…

Multilayer Batch Learning Growing Neural Gas for Learning Multiscale Topologies

Hierarchical topological structure learning methods are expected to be developed in the field of data mining for extracting multiscale topological structures from an unknown dataset. However, most methods require user-defined parameters, and it is difficult for users to determine these parameters an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced computational intelligence and intelligent informatics 2021-11, Vol.25 (6), p.1011-1023
Main Authors: Toda, Yuichiro, Matsuno, Takayuki, Minami, Mamoru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hierarchical topological structure learning methods are expected to be developed in the field of data mining for extracting multiscale topological structures from an unknown dataset. However, most methods require user-defined parameters, and it is difficult for users to determine these parameters and effectively utilize the method. In this paper, we propose a new parameter-less hierarchical topological structure learning method based on growing neural gas (GNG). First, we propose batch learning GNG (BL-GNG) to improve the learning convergence and reduce the user-designed parameters in GNG. BL-GNG uses an objective function based on fuzzy C-means to improve the learning convergence. Next, we propose multilayer BL-GNG (MBL-GNG), which is a parameter-less unsupervised learning algorithm based on hierarchical topological structure learning. In MBL-GNG, the input data of each layer uses parent nodes to learn more abstract topological structures from the dataset. Furthermore, MBL-GNG can automatically determine the number of nodes and layers according to the data distribution. Finally, we conducted several experiments to evaluate our proposed method by comparing it with other hierarchical approaches and discuss the effectiveness of our proposed method.
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2021.p1011