Loading…
Coherent feedback cooling of a nanomechanical membrane with atomic spins
Coherent feedback stabilises a system towards a target state without the need of a measurement, thus avoiding the quantum backaction inherent to measurements. Here, we employ optical coherent feedback to remotely cool a nanomechanical membrane using atomic spins as a controller. Direct manipulation...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coherent feedback stabilises a system towards a target state without the need of a measurement, thus avoiding the quantum backaction inherent to measurements. Here, we employ optical coherent feedback to remotely cool a nanomechanical membrane using atomic spins as a controller. Direct manipulation of the atoms allows us to tune from strong-coupling to an overdamped regime. Making use of the full coherent control offered by our system, we perform spin-membrane state swaps combined with stroboscopic spin pumping to cool the membrane in a room-temperature environment to \({T}={216}\,\mathrm{mK}\) (\(\bar{n}_{m} = 2.3\times 10^3\) phonons) in \({200}\,\mathrm{{\mu}s}\). We furthermore observe and study the effects of delayed feedback on the cooling performance. Starting from a cryogenically pre-cooled membrane, this method would enable cooling of the mechanical oscillator close to its quantum mechanical ground state and the preparation of nonclassical states. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2111.09802 |