Loading…

Do fish isotopic niches change in an Amazon floodplain lake over the hydrological regime?

Floodplain lakes are ecosystems characterised by annual flood and dry cycles. Fish ecology is influenced by the flood pulse due to the large influx of allochthonous food resources and diversification of habitats during the flood cycle, while during the dry cycle, fishes tend to be confined in reduce...

Full description

Saved in:
Bibliographic Details
Published in:Ecology of freshwater fish 2022-01, Vol.31 (1), p.72-80
Main Authors: Azevedo, Lucas Silva, Pestana, Inácio Abreu, Almeida, Marcelo Gomes, Bastos, Wanderley Rodrigues, Souza, Cristina Maria Magalhães
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Floodplain lakes are ecosystems characterised by annual flood and dry cycles. Fish ecology is influenced by the flood pulse due to the large influx of allochthonous food resources and diversification of habitats during the flood cycle, while during the dry cycle, fishes tend to be confined in reduced habitat. The aim of this study was to evaluate the seasonal variation in trophic niche width and overlap of four species—Mylossoma duriventre, Prochilodus nigricans, Cichla.pleiozona and Serrasalmus rhombeus—in an Amazonian floodplain lake. Stable isotope analyses were used to estimate trophic niche width and overlap during the flood and dry seasons. We hypothesised broader niche width for all species during the flood cycle and a higher degree of overlap between the two piscivorous fishes during the dry cycle. Isotopic niche width was 72% broader for P. nigricans, 61% for S. rhombeus and 54% for C. pleiozona during the dry cycle, which did not support our hypothesis. Core niche width overlaps were not observed between piscivorous species in either flood or dry cycle. The results indicate that seasonal variation in isotopic niche width is specific to feeding habit. Understanding how fish trophic ecology responds to changes in the hydrological regime during the seasons is crucial for sustainable fishery management in a region where many people rely heavily on fish for nutritional and economic purposes.
ISSN:0906-6691
1600-0633
DOI:10.1111/eff.12609