Loading…

Design and Implementation of Super Wide Band Triple Band-Notched MIMO Antennas

In this article, a triple band-notched super-wideband (SWB) monopole antenna is designed and manufactured. The measured working frequency band (out of the filters working band) ranges from 2.5 to 20 GHz. A single radiating element is utilized to analyze and implement various MIMO antennas, with isol...

Full description

Saved in:
Bibliographic Details
Published in:Wireless personal communications 2021-12, Vol.121 (4), p.2757-2778
Main Authors: Ahmed, Bazil Taha, Carreras, Darío Castro, Marin, Eduardo Garcia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, a triple band-notched super-wideband (SWB) monopole antenna is designed and manufactured. The measured working frequency band (out of the filters working band) ranges from 2.5 to 20 GHz. A single radiating element is utilized to analyze and implement various MIMO antennas, with isolation between the antenna ports higher than 15 dB. Two parallel-fed elements SWB MIMO antenna and four parallel-fed elements SWB MIMO antennas are presented. Metallic barriers with different shapes are used to improve the isolation among ports from a low unacceptable value of 12 dB to a value higher than 20 dB within most of the working frequency band. S-parameters of the presented SWB MIMO antennas experimentally shows that antennas perform well up to 20 GHz, which is the highest frequency supported by the available Vector Network Analyzer used in the S parameters measurements. Satisfactory performance is observed up to 50 GHz by computer simulations using the CST software.
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-021-08847-9