Loading…
SAPIENS: A 64-kb RRAM-Based Non-Volatile Associative Memory for One-Shot Learning and Inference at the Edge
Learning from a few examples (one/few-shot learning) on the fly is a key challenge for on-device machine intelligence. We present the first chip-level demonstration of one-shot learning with Stanford Associative memory for Programmable, Integrated Edge iNtelligence via life-long learning and Search...
Saved in:
Published in: | IEEE transactions on electron devices 2021-12, Vol.68 (12), p.6637-6643 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Learning from a few examples (one/few-shot learning) on the fly is a key challenge for on-device machine intelligence. We present the first chip-level demonstration of one-shot learning with Stanford Associative memory for Programmable, Integrated Edge iNtelligence via life-long learning and Search (SAPIENS), a resistive random access memory (RRAM)-based non-volatile associative memory (AM) chip that serves as the backend for memory-augmented neural networks (MANNs). The 64-kb fully integrated RRAM-CMOS AM chip performs long-term feature embedding and retrieval, demonstrated on a 32-way one-shot learning task on the Omniglot dataset. Using only one example per class for 32 unseen classes during on-chip learning, SAPIENS achieves 79% measured inference accuracy on Omniglot, comparable to edge software model accuracy using five-level quantization (82%). It achieves an energy efficiency of 118 GOPS/W at 200 MHz for in-memory L1 distance computation and prediction. Multi-bank measurements on the same chip show that increasing the capacity from three banks (24 kb) to eight banks (64 kb) improves the chip accuracy from 73.5% to 79%, while minimizing the accuracy excursion due to bank-to-bank variability. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2021.3110464 |