Loading…
Interpretable Fuzzy Logic Control for Multirobot Coordination in a Cluttered Environment
Mobile robot navigation is an essential problem in robotics. We propose a method for constructing and training fuzzy logic controllers (FLCs) to coordinate a robotic team performing collision-free navigation and arriving simultaneously at a target location in an unknown environment. Our FLCs are org...
Saved in:
Published in: | IEEE transactions on fuzzy systems 2021-12, Vol.29 (12), p.3676-3685 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mobile robot navigation is an essential problem in robotics. We propose a method for constructing and training fuzzy logic controllers (FLCs) to coordinate a robotic team performing collision-free navigation and arriving simultaneously at a target location in an unknown environment. Our FLCs are organized in a multilayered architecture to reduce the number of tunable parameters and improve the scalability of the solution. In addition, in contrast to simple traditional switching mechanisms between target seeking and obstacle avoidance, we develop a novel rule-embedded FLC to improve the navigation performance. Moreover, we design a grouping and merging mechanism to obtain transparent fuzzy sets and integrate this mechanism into the training process for all FLCs, thus increasing the interpretability of the fuzzy models. We train the proposed FLCs using a novel multiobjective hybrid approach combining a genetic algorithm and particle swarm optimization. Simulation results demonstrate the effectiveness of our algorithms in reliably solving the proposed navigation problem. |
---|---|
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/TFUZZ.2021.3111446 |