Loading…
Hybrid minimization algorithm for computationally expensive multi-dimensional fitting
Multi-dimensional optimization is widely used in virtually all areas of modern astrophysics. However, it is often too computationally expensive to evaluate a model on-the-fly. Typically, it is solved by pre-computing a grid of models for a predetermined set of positions in the parameter space and th...
Saved in:
Published in: | arXiv.org 2021-12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multi-dimensional optimization is widely used in virtually all areas of modern astrophysics. However, it is often too computationally expensive to evaluate a model on-the-fly. Typically, it is solved by pre-computing a grid of models for a predetermined set of positions in the parameter space and then interpolating. Here we present a hybrid minimization approach based on the local quadratic approximation of the \(\chi^2\) profile from a discrete set of models in a multidimensional parameter space. The main idea of our approach is to eliminate the interpolation of models from the process of finding the best-fitting solution. We present several examples of applications of our minimization technique to the analysis of stellar and extragalactic spectra. |
---|---|
ISSN: | 2331-8422 |