Loading…

Axiomatization of Some Basic and Modal Boolean Connexive Logics

Boolean connexive logic is an extension of Boolean logic that is closed under Modus Ponens and contains Aristotle’s and Boethius’ theses. According to these theses (i) a sentence cannot imply its negation and the negation of a sentence cannot imply the sentence; and (ii) if the antecedent implies th...

Full description

Saved in:
Bibliographic Details
Published in:Logica universalis 2021-12, Vol.15 (4), p.517-536
Main Author: Klonowski, Mateusz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Boolean connexive logic is an extension of Boolean logic that is closed under Modus Ponens and contains Aristotle’s and Boethius’ theses. According to these theses (i) a sentence cannot imply its negation and the negation of a sentence cannot imply the sentence; and (ii) if the antecedent implies the consequent, then the antecedent cannot imply the negation of the consequent and if the antecedent implies the negation of the consequent, then the antecedent cannot imply the consequent. Such a logic was first introduced by Jarmużek and Malinowski, by means of so-called relating semantics and tableau systems. Subsequently its modal extension was determined by means of the combination of possible-worlds semantics and relating semantics. In the following article we present axiomatic systems of some basic and modal Boolean connexive logics. Proofs of completeness will be carried out using canonical models defined with respect to maximal consistent sets.
ISSN:1661-8297
1661-8300
DOI:10.1007/s11787-021-00291-4