Loading…
Batalin–Vilkovisky quantization of fuzzy field theories
We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, wh...
Saved in:
Published in: | Letters in mathematical physics 2021-12, Vol.111 (6), Article 149 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, which in particular leads to quantizations of finite-dimensional analogues of the field theories proposed recently through the notion of ‘braided
L
∞
-algebras’. The techniques are illustrated by computing perturbative correlation functions for scalar and Chern–Simons theories on the fuzzy 2-sphere, as well as for braided scalar field theories on the fuzzy 2-torus. |
---|---|
ISSN: | 0377-9017 1573-0530 |
DOI: | 10.1007/s11005-021-01490-2 |