Loading…

Batalin–Vilkovisky quantization of fuzzy field theories

We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, wh...

Full description

Saved in:
Bibliographic Details
Published in:Letters in mathematical physics 2021-12, Vol.111 (6), Article 149
Main Authors: Nguyen, Hans, Schenkel, Alexander, Szabo, Richard J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3
cites cdi_FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3
container_end_page
container_issue 6
container_start_page
container_title Letters in mathematical physics
container_volume 111
creator Nguyen, Hans
Schenkel, Alexander
Szabo, Richard J.
description We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, which in particular leads to quantizations of finite-dimensional analogues of the field theories proposed recently through the notion of ‘braided L ∞ -algebras’. The techniques are illustrated by computing perturbative correlation functions for scalar and Chern–Simons theories on the fuzzy 2-sphere, as well as for braided scalar field theories on the fuzzy 2-torus.
doi_str_mv 10.1007/s11005-021-01490-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610100305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610100305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbM2HWcLAHxkiqxAbZWHhNwG-LWTpDaFf_AH_IlGILEjtXd3HNHcxg7RjhFAH0WMIbiIJADznLgYodNUGnJQUnYZROQWvMcUO-zgxAWECGhYMLyi6IvWtt9vn882Xbp3mxYbpL1UHS93Ra9dV3imqQZtttN0lhq66R_IecthUO21xRtoKPfnLLH66uHy1s-v7-5uzyf80qmsudKZlWVkq4Ia50KkWohirzMSUGdZ6omQqSKMolQqgxKAqKsnNVKoyBIazllJ-Puyrv1QKE3Czf4Lp40IkWIf8v445SJsVV5F4Knxqy8fS38xiCYb0VmVGSiIvOjyIgIyREKsdw9k_-b_of6AiO2aeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610100305</pqid></control><display><type>article</type><title>Batalin–Vilkovisky quantization of fuzzy field theories</title><source>Springer Nature</source><creator>Nguyen, Hans ; Schenkel, Alexander ; Szabo, Richard J.</creator><creatorcontrib>Nguyen, Hans ; Schenkel, Alexander ; Szabo, Richard J.</creatorcontrib><description>We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, which in particular leads to quantizations of finite-dimensional analogues of the field theories proposed recently through the notion of ‘braided L ∞ -algebras’. The techniques are illustrated by computing perturbative correlation functions for scalar and Chern–Simons theories on the fuzzy 2-sphere, as well as for braided scalar field theories on the fuzzy 2-torus.</description><identifier>ISSN: 0377-9017</identifier><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-021-01490-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Braiding ; Complex Systems ; Field theory (physics) ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Measurement ; Physics ; Physics and Astronomy ; Quantum theory ; Scalars ; Theoretical ; Toruses</subject><ispartof>Letters in mathematical physics, 2021-12, Vol.111 (6), Article 149</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3</citedby><cites>FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3</cites><orcidid>0000-0001-6790-1784 ; 0000-0002-0569-2793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nguyen, Hans</creatorcontrib><creatorcontrib>Schenkel, Alexander</creatorcontrib><creatorcontrib>Szabo, Richard J.</creatorcontrib><title>Batalin–Vilkovisky quantization of fuzzy field theories</title><title>Letters in mathematical physics</title><addtitle>Lett Math Phys</addtitle><description>We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, which in particular leads to quantizations of finite-dimensional analogues of the field theories proposed recently through the notion of ‘braided L ∞ -algebras’. The techniques are illustrated by computing perturbative correlation functions for scalar and Chern–Simons theories on the fuzzy 2-sphere, as well as for braided scalar field theories on the fuzzy 2-torus.</description><subject>Braiding</subject><subject>Complex Systems</subject><subject>Field theory (physics)</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Measurement</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum theory</subject><subject>Scalars</subject><subject>Theoretical</subject><subject>Toruses</subject><issn>0377-9017</issn><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbM2HWcLAHxkiqxAbZWHhNwG-LWTpDaFf_AH_IlGILEjtXd3HNHcxg7RjhFAH0WMIbiIJADznLgYodNUGnJQUnYZROQWvMcUO-zgxAWECGhYMLyi6IvWtt9vn882Xbp3mxYbpL1UHS93Ra9dV3imqQZtttN0lhq66R_IecthUO21xRtoKPfnLLH66uHy1s-v7-5uzyf80qmsudKZlWVkq4Ia50KkWohirzMSUGdZ6omQqSKMolQqgxKAqKsnNVKoyBIazllJ-Puyrv1QKE3Czf4Lp40IkWIf8v445SJsVV5F4Knxqy8fS38xiCYb0VmVGSiIvOjyIgIyREKsdw9k_-b_of6AiO2aeY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Nguyen, Hans</creator><creator>Schenkel, Alexander</creator><creator>Szabo, Richard J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6790-1784</orcidid><orcidid>https://orcid.org/0000-0002-0569-2793</orcidid></search><sort><creationdate>20211201</creationdate><title>Batalin–Vilkovisky quantization of fuzzy field theories</title><author>Nguyen, Hans ; Schenkel, Alexander ; Szabo, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Braiding</topic><topic>Complex Systems</topic><topic>Field theory (physics)</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Measurement</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum theory</topic><topic>Scalars</topic><topic>Theoretical</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hans</creatorcontrib><creatorcontrib>Schenkel, Alexander</creatorcontrib><creatorcontrib>Szabo, Richard J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hans</au><au>Schenkel, Alexander</au><au>Szabo, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Batalin–Vilkovisky quantization of fuzzy field theories</atitle><jtitle>Letters in mathematical physics</jtitle><stitle>Lett Math Phys</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>111</volume><issue>6</issue><artnum>149</artnum><issn>0377-9017</issn><eissn>1573-0530</eissn><abstract>We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, which in particular leads to quantizations of finite-dimensional analogues of the field theories proposed recently through the notion of ‘braided L ∞ -algebras’. The techniques are illustrated by computing perturbative correlation functions for scalar and Chern–Simons theories on the fuzzy 2-sphere, as well as for braided scalar field theories on the fuzzy 2-torus.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11005-021-01490-2</doi><orcidid>https://orcid.org/0000-0001-6790-1784</orcidid><orcidid>https://orcid.org/0000-0002-0569-2793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-9017
ispartof Letters in mathematical physics, 2021-12, Vol.111 (6), Article 149
issn 0377-9017
1573-0530
language eng
recordid cdi_proquest_journals_2610100305
source Springer Nature
subjects Braiding
Complex Systems
Field theory (physics)
Geometry
Group Theory and Generalizations
Mathematical and Computational Physics
Measurement
Physics
Physics and Astronomy
Quantum theory
Scalars
Theoretical
Toruses
title Batalin–Vilkovisky quantization of fuzzy field theories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Batalin%E2%80%93Vilkovisky%20quantization%20of%20fuzzy%20field%20theories&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Nguyen,%20Hans&rft.date=2021-12-01&rft.volume=111&rft.issue=6&rft.artnum=149&rft.issn=0377-9017&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-021-01490-2&rft_dat=%3Cproquest_cross%3E2610100305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610100305&rft_id=info:pmid/&rfr_iscdi=true