Loading…
Batalin–Vilkovisky quantization of fuzzy field theories
We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, wh...
Saved in:
Published in: | Letters in mathematical physics 2021-12, Vol.111 (6), Article 149 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Letters in mathematical physics |
container_volume | 111 |
creator | Nguyen, Hans Schenkel, Alexander Szabo, Richard J. |
description | We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, which in particular leads to quantizations of finite-dimensional analogues of the field theories proposed recently through the notion of ‘braided
L
∞
-algebras’. The techniques are illustrated by computing perturbative correlation functions for scalar and Chern–Simons theories on the fuzzy 2-sphere, as well as for braided scalar field theories on the fuzzy 2-torus. |
doi_str_mv | 10.1007/s11005-021-01490-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610100305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610100305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbM2HWcLAHxkiqxAbZWHhNwG-LWTpDaFf_AH_IlGILEjtXd3HNHcxg7RjhFAH0WMIbiIJADznLgYodNUGnJQUnYZROQWvMcUO-zgxAWECGhYMLyi6IvWtt9vn882Xbp3mxYbpL1UHS93Ra9dV3imqQZtttN0lhq66R_IecthUO21xRtoKPfnLLH66uHy1s-v7-5uzyf80qmsudKZlWVkq4Ia50KkWohirzMSUGdZ6omQqSKMolQqgxKAqKsnNVKoyBIazllJ-Puyrv1QKE3Czf4Lp40IkWIf8v445SJsVV5F4Knxqy8fS38xiCYb0VmVGSiIvOjyIgIyREKsdw9k_-b_of6AiO2aeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610100305</pqid></control><display><type>article</type><title>Batalin–Vilkovisky quantization of fuzzy field theories</title><source>Springer Nature</source><creator>Nguyen, Hans ; Schenkel, Alexander ; Szabo, Richard J.</creator><creatorcontrib>Nguyen, Hans ; Schenkel, Alexander ; Szabo, Richard J.</creatorcontrib><description>We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, which in particular leads to quantizations of finite-dimensional analogues of the field theories proposed recently through the notion of ‘braided
L
∞
-algebras’. The techniques are illustrated by computing perturbative correlation functions for scalar and Chern–Simons theories on the fuzzy 2-sphere, as well as for braided scalar field theories on the fuzzy 2-torus.</description><identifier>ISSN: 0377-9017</identifier><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-021-01490-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Braiding ; Complex Systems ; Field theory (physics) ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Measurement ; Physics ; Physics and Astronomy ; Quantum theory ; Scalars ; Theoretical ; Toruses</subject><ispartof>Letters in mathematical physics, 2021-12, Vol.111 (6), Article 149</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3</citedby><cites>FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3</cites><orcidid>0000-0001-6790-1784 ; 0000-0002-0569-2793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nguyen, Hans</creatorcontrib><creatorcontrib>Schenkel, Alexander</creatorcontrib><creatorcontrib>Szabo, Richard J.</creatorcontrib><title>Batalin–Vilkovisky quantization of fuzzy field theories</title><title>Letters in mathematical physics</title><addtitle>Lett Math Phys</addtitle><description>We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, which in particular leads to quantizations of finite-dimensional analogues of the field theories proposed recently through the notion of ‘braided
L
∞
-algebras’. The techniques are illustrated by computing perturbative correlation functions for scalar and Chern–Simons theories on the fuzzy 2-sphere, as well as for braided scalar field theories on the fuzzy 2-torus.</description><subject>Braiding</subject><subject>Complex Systems</subject><subject>Field theory (physics)</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Measurement</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum theory</subject><subject>Scalars</subject><subject>Theoretical</subject><subject>Toruses</subject><issn>0377-9017</issn><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbM2HWcLAHxkiqxAbZWHhNwG-LWTpDaFf_AH_IlGILEjtXd3HNHcxg7RjhFAH0WMIbiIJADznLgYodNUGnJQUnYZROQWvMcUO-zgxAWECGhYMLyi6IvWtt9vn882Xbp3mxYbpL1UHS93Ra9dV3imqQZtttN0lhq66R_IecthUO21xRtoKPfnLLH66uHy1s-v7-5uzyf80qmsudKZlWVkq4Ia50KkWohirzMSUGdZ6omQqSKMolQqgxKAqKsnNVKoyBIazllJ-Puyrv1QKE3Czf4Lp40IkWIf8v445SJsVV5F4Knxqy8fS38xiCYb0VmVGSiIvOjyIgIyREKsdw9k_-b_of6AiO2aeY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Nguyen, Hans</creator><creator>Schenkel, Alexander</creator><creator>Szabo, Richard J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6790-1784</orcidid><orcidid>https://orcid.org/0000-0002-0569-2793</orcidid></search><sort><creationdate>20211201</creationdate><title>Batalin–Vilkovisky quantization of fuzzy field theories</title><author>Nguyen, Hans ; Schenkel, Alexander ; Szabo, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Braiding</topic><topic>Complex Systems</topic><topic>Field theory (physics)</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Measurement</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum theory</topic><topic>Scalars</topic><topic>Theoretical</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hans</creatorcontrib><creatorcontrib>Schenkel, Alexander</creatorcontrib><creatorcontrib>Szabo, Richard J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hans</au><au>Schenkel, Alexander</au><au>Szabo, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Batalin–Vilkovisky quantization of fuzzy field theories</atitle><jtitle>Letters in mathematical physics</jtitle><stitle>Lett Math Phys</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>111</volume><issue>6</issue><artnum>149</artnum><issn>0377-9017</issn><eissn>1573-0530</eissn><abstract>We apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, which in particular leads to quantizations of finite-dimensional analogues of the field theories proposed recently through the notion of ‘braided
L
∞
-algebras’. The techniques are illustrated by computing perturbative correlation functions for scalar and Chern–Simons theories on the fuzzy 2-sphere, as well as for braided scalar field theories on the fuzzy 2-torus.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11005-021-01490-2</doi><orcidid>https://orcid.org/0000-0001-6790-1784</orcidid><orcidid>https://orcid.org/0000-0002-0569-2793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-9017 |
ispartof | Letters in mathematical physics, 2021-12, Vol.111 (6), Article 149 |
issn | 0377-9017 1573-0530 |
language | eng |
recordid | cdi_proquest_journals_2610100305 |
source | Springer Nature |
subjects | Braiding Complex Systems Field theory (physics) Geometry Group Theory and Generalizations Mathematical and Computational Physics Measurement Physics Physics and Astronomy Quantum theory Scalars Theoretical Toruses |
title | Batalin–Vilkovisky quantization of fuzzy field theories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Batalin%E2%80%93Vilkovisky%20quantization%20of%20fuzzy%20field%20theories&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Nguyen,%20Hans&rft.date=2021-12-01&rft.volume=111&rft.issue=6&rft.artnum=149&rft.issn=0377-9017&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-021-01490-2&rft_dat=%3Cproquest_cross%3E2610100305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-538cc6e7ce1d76226722a9b9e50d985dee11ece8310b580be0ee8b4d5712e06d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610100305&rft_id=info:pmid/&rfr_iscdi=true |