Loading…

Numerical investigation of blade tip winglet on flow structure in a high loading transonic rotor

The interactions of tip leakage flow with mainstream and shock wave result in larger aerodynamic losses and blockage in high loading compressors and tend to be one of the triggers for flow instability. In order to attenuate the influence of leakage flow and improve the stall margin of highly loaded...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2022-01, Vol.236 (1), p.96-108
Main Authors: Zhao, Qingjun, Cui, Weiwei, Xiang, Xiaorong, Xu, Qiangren, Xu, Jianzhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interactions of tip leakage flow with mainstream and shock wave result in larger aerodynamic losses and blockage in high loading compressors and tend to be one of the triggers for flow instability. In order to attenuate the influence of leakage flow and improve the stall margin of highly loaded compressor, the new rotors surrounded by tip winglet are investigated by a numerical method. The tip winglet is designed by extending the flat blade tip section in outer 1.5% span of rotor blade. As the angle between the leakage flow and main flow decreases due to winglet, the losses and flow blockage have been weakened near stall condition, and the stall margin of new rotor with pressure-side winglet has an increase of over 10%. The migration and accumulation of low-energy fluids near the corner of casing endwall are affected significantly by tip winglet. As a result, the pressure-side winglet causes an increase of static pressure near the casing corner of pressure surface. Although the driving pressure difference near the leading edge of blade has increased slightly in the tip region, the strength and massflow rate of leakage flow appear to be decreased. As the leakage flow weakens in the new rotor with pressure-side winglet, its interaction with mainstream and shock has been suppressed obviously, and the delay of rotating stall occurs as well. Moreover, the flowfields of the new rotor with pressure-side winglet have been simulated at 40%, 60%, and 80% design speed. It is shown that the flow blockage and losses in the tip region have also reduced near stall point, and an improvement of overall performance is present in the new rotor with pressure-side winglet. All the changes of tip flow structure caused by winglet benefit to an increase of aerodynamic performance of new rotor at full rotational speed range.
ISSN:0954-4100
2041-3025
DOI:10.1177/09544100211008093