Loading…
Urban Land-Use Efficiency Analysis by Integrating LCRPGR and Additional Indicators
Sustainable Development Goal (SDG) target 11.3 is to enhance inclusive and sustainable urbanisation and capacity for participatory, integrated, and sustainable human settlement planning and management in all countries by 2030. Within that goal, the indicator SDG 11.3.1 is defined as the ratio of lan...
Saved in:
Published in: | Sustainability 2021-12, Vol.13 (24), p.13518 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sustainable Development Goal (SDG) target 11.3 is to enhance inclusive and sustainable urbanisation and capacity for participatory, integrated, and sustainable human settlement planning and management in all countries by 2030. Within that goal, the indicator SDG 11.3.1 is defined as the ratio of land consumption rate to population growth rate (LCRPGR). This ratio is primarily used to measure urban land-use efficiency and reveal the relationship between urban land consumption and population growth. The LCRPGR indicator is aimed at representing overall urban land-use efficiency. This study added compactness, urban expansion speed, and urban expansion intensity to better reflect the impact of built-up area changes on the overall urban land-use efficiency. In addition, this study combined LCRPGR and the land consumption per capita rate (LCPC) to comprehensively analyse the relationship between land consumption and population growth in existing built urban areas, expanded built urban areas, and total built areas. This study employed three years of urban built-up and population data for 2010, 2015, and 2020 for 338 cities along the Belt and Road region to analyse land-use efficiency. The results show that the average LCRPGR for the period 2010–2015 was 1.01, which is close to the recommended ideal LCRPGR value of 1.0 in the United Nations Human Settlements Programme. For 2015–2020, the LCRPGR was 0.71, indicating that the overall urban land consumption in the study area decreased. This is also supported by the fact that the urban expansion intensity in 2020 was weaker than that in 2015. In addition, according to research on the tendency of changes in the entire urban built-up area, the smaller the urban population, the slower the urban expansion speed, the smaller the compactness, and the increasingly complex the urban borders. In cities where the overall LCRPGR is far from the ideal value of 1, the entire built-up area is divided into existing and expanded urban regions. It was found that the average LCPC value in expanded built-up areas was higher than that of existing built-up areas, showing that as cities developed, the LCPC of the newly developed urban areas was greater than that of existing built-up areas. Meanwhile, the LCPC in the expanded built-up areas showed a decreasing trend over time from 2010 to 2015 to 2020, indicating that land use in the expanded built-up regions tended to be efficient. These findings provide helpful information in decision mak |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su132413518 |