Loading…
On the topology of Lagrangian fillings of the standard Legendrian sphere
In this paper we study the uniqueness of Lagrangian fillings of the standard Legendrian sphere \(\mathcal{L}_0\) in the standard contact sphere \((S^{2n-1}, \xi_{\text st})\). We show that every exact Maslov zero Lagrangian filling \(L\) of \(\mathcal{L}_0\) in a Liouville filling of \((S^{2n-1}, \x...
Saved in:
Published in: | arXiv.org 2023-09 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we study the uniqueness of Lagrangian fillings of the standard Legendrian sphere \(\mathcal{L}_0\) in the standard contact sphere \((S^{2n-1}, \xi_{\text st})\). We show that every exact Maslov zero Lagrangian filling \(L\) of \(\mathcal{L}_0\) in a Liouville filling of \((S^{2n-1}, \xi_{\text st})\) is a homology ball. If we restrict ourselves to real Lagrangian fillings, then \(L\) is diffeomorphic to the \(n\)-ball for \(n \geq 6\). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2112.11984 |