Loading…
Existence of multiple solutions to Schrödinger–Poisson system in a nonlocal set up in R3
The aim of this work is to study the following system: ( - Δ ) s u + α ϕ u = β u - γ + g ( u ) + h ( x ) in R 3 u > 0 in R 3 ( - Δ ) s ϕ = u 2 in R 3 . under the Berestycki–Lions type condition. Here α , β > 0 , 0 < s , γ < 1 , g ∈ C ( R , R ) , h ∈ L 2 ( R 3 ) . We will prove the existe...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Physik 2022, Vol.73 (1) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this work is to study the following system:
(
-
Δ
)
s
u
+
α
ϕ
u
=
β
u
-
γ
+
g
(
u
)
+
h
(
x
)
in
R
3
u
>
0
in
R
3
(
-
Δ
)
s
ϕ
=
u
2
in
R
3
.
under the Berestycki–Lions type condition. Here
α
,
β
>
0
,
0
<
s
,
γ
<
1
,
g
∈
C
(
R
,
R
)
,
h
∈
L
2
(
R
3
)
. We will prove the existence of at least two solutions using the Ekeland’s variational principle, Mountain pass theorem and a Pohožaev type identity. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-021-01649-w |