Loading…

Existence of multiple solutions to Schrödinger–Poisson system in a nonlocal set up in R3

The aim of this work is to study the following system: ( - Δ ) s u + α ϕ u = β u - γ + g ( u ) + h ( x ) in R 3 u > 0 in R 3 ( - Δ ) s ϕ = u 2 in R 3 . under the Berestycki–Lions type condition. Here α , β > 0 , 0 < s , γ < 1 , g ∈ C ( R , R ) , h ∈ L 2 ( R 3 ) . We will prove the existe...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Physik 2022, Vol.73 (1)
Main Authors: Choudhuri, Debajyoti, Saoudi, Kamel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this work is to study the following system: ( - Δ ) s u + α ϕ u = β u - γ + g ( u ) + h ( x ) in R 3 u > 0 in R 3 ( - Δ ) s ϕ = u 2 in R 3 . under the Berestycki–Lions type condition. Here α , β > 0 , 0 < s , γ < 1 , g ∈ C ( R , R ) , h ∈ L 2 ( R 3 ) . We will prove the existence of at least two solutions using the Ekeland’s variational principle, Mountain pass theorem and a Pohožaev type identity.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-021-01649-w